

SYLLABUS

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

Course Code: 1040 / 3040 2015 - 2016

M - SCHEME

DIRECTORATE OF TECHNICAL EDUCATION
GOVERNMENT OF TAMILNADU

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

Syllabus Revision Committee Chairperson

Tmt. S. Mathumathi I.A.S.,
Director of Technical Education
Directorate of Technical Education
Chennai 600 025

Convener

Dr. M.Jeganmohan
Principal
Government Polytechnic College
Usilampatti

Members:

1.	Thriru.A.Shanmuga Sundaram,	6.	Dr.G.Vijayakumari,
	HOD/ECE		Lecturer/ECE,
	Sakthi Polytechnic college,		Government Polytechnic college,
	Andiyur,		Ambalakaranpatti,
	Erode.		Melur.
2.	Dr. A.Hemalatha,	7.	Dr.S.Mohammed Mansoor
	HOD/ECE,		Roomi,
	Periyar Centenary Polytechnic		Associate Professor/ECE
	college,		Depatrment,
	Vallan,		Thiagarajar college of Engineering,
	Thanjavur.		Madurai.
3.	Thiru M.K.Srinivasan,	8.	Dr.Dhanasekaran,
	HOD/ECE Depatrment,		Professor,
	Pattukottai Polytechnic college,		NITTTR,
	Santhankadu,		Chennai.
	Pattukottai – 614 601		
4.	Dr.Rani,	9.	Dr.V.Veerappan,
	Principal,		Co-founder & President,
	Women Polytechnic college,		Tessolve Semiconductor Pvt Ltd,
	Puducherry.		Bangalore.
5.	Thiru.S.P.Nagarajan,	10.	Thiru Raahul Raghavan, B.E
	Lecturer,		Lead Architect,
	Mohamed Sathak Polytechnic		Glyton Solution LLP,
	college,		Bangalore.
	Mayakulam, Ramanathapuram,		
	Keelakarai – 623 803		

DIPLOMA COURSES IN ENGINEERING/TECHNOLOGY

(SEMESTER SYSTEM)

(Implemented from 2015- 2016)

M - SCHEME

REGULATIONS*

* Applicable to the Diploma Courses other than Diploma in Hotel Management & Catering Technology and the Diploma Courses offered through MGR Film Institute, Chennai.

1. Description of the Course:

a. Full Time (3 years)

The Course for the full Time Diploma in Engineering shall extend over a period of three academic years, consisting of 6 semesters* and the First Year is common to all Engineering Branches.

b. Sandwich (3½ years)

The Course for the Diploma in Engineering (sandwich) shall extend over a period of three and half academic years, consisting of 7 semesters* and the First Year is common to all Engineering Branches. The subjects of three years full time diploma course being regrouped for academic convenience.

During 4th and/or during 7th semester the students undergo industrial training for six months/ one year. Industrial training examination will be conducted after completion of every 6 months of industrial training

c. Part Time (4 years)

The course for the diploma in Engineering shall extend over a period of 4 academic years containing of 8 semesters*, the subjects of 3 year full time diploma courses being regrouped for academic convenience.

* Each Semester will have 15 weeks duration of study with 35 hrs. /Week for Regular Diploma Programme and 18hrs/ week (21 hrs. / Week I year) for Part-Time Diploma Programmes.

The Curriculum for all the 6 Semesters of Diploma courses (Engineering & Special Diploma Courses viz. Textile Technology, Leather Technology, Printing Technology, Chemical Technology etc.) have been revised and revised curriculum is applicable for the candidates admitted from 2015 – 2016 academic year onwards.

2. Condition for Admission:

Condition for admission to the diploma courses shall be required to have passed in The S.S.L.C Examination of the Board of Secondary Education, TamilNadu.

(Or)

The Anglo Indian High School Examination with eligibility for Higher Secondary Course in TamilNadu.

(Or)

The Matriculation Examination of Tamil Nadu.

(Or)

Any other Examination recognized as equivalent to the above by the Board of Secondary Education, TamilNadu.

Note: In addition, at the time of admission the candidate will have to satisfy certain minimum requirements, which may be prescribed from time to time.

3. Admission to Second year (Lateral Entry):

A pass in HSC (Academic) or (Vocational) courses mentioned in the Higher Secondary Schools in TamilNadu affiliated to the TamilNadu Higher Secondary Board with eligibility for university Courses of study or equivalent examination, & Should have studied the following subjects.

SI.		H.Sc Academic	H.Sc V	ocational	
No	Courses	Subjects Studied	Subjects Studied		
140	Subjects Studied		Related subjects	Vocational subjects	
1.	All the Regular and Sandwich Diploma Courses	Maths, Physics & Chemistry	Maths / Physics / Chemistry	Related Vocational Subjects Theory & Practical	
2.	Diploma course in Modern Office Practice	English & Accountancy English & Elements of Economics English & Elements of Commerce	English & Accountancy, English & Elements of Economics, English & Management Principles & Techniques, English & Typewriting	Accountancy & Auditing, Banking, Business Management, Co-operative Management, International Trade, Marketing & Salesmanship, Insurance & Material Management, Office Secretaryship.	

 For the diploma Courses related with Engineering/Technology, the related / equivalent subjects prescribed along with Practical may also be taken for arriving the eligibility.

- Branch will be allotted according to merit through counseling by the respective Principal as per communal reservation.
- For admission to the Textile Technology, Leather Technology, Printing Technology, Chemical Technology and Modern Office Practice Diploma courses the candidates studied the related subjects will be given first preference.
- Candidates who have studied Commerce Subjects are not eligible for Engineering Diploma Courses.

4. Age Limit: No Age limit.

5. Medium of Instruction: English

6. Eligibility for the Award of Diploma:

No candidate shall be eligible for the Diploma unless he/she has undergone the prescribed course of study for a period of not less than 3 academic years in any institution affiliated to the State Board of Technical Education and Training, TamilNadu, when joined in First Year and two years if joined under Lateral Entry scheme in the second year and passed the prescribed examination.

The minimum and maximum period for completion of Diploma Courses are as given below:

Diploma Course	Minimum Period	Maximum Period
Full Time	3 Years	6 Years
Full Time(Lateral Entry)	2 Years	5 Years
Sandwich	3½ Years	6½ Years
Part Time	4 Years	7 Years

7. Subjects of Study and Curriculum outline:

The subjects of study shall be in accordance with the syllabus prescribed from time to time, both in theory and practical. The curriculum outline is given in Annexure - I

8. Examinations:

Board Examinations in all subjects of all the semesters under the scheme of examinations will be conducted at the end of each semester.

The Internal assessment marks for all the subjects will be awarded on the basis of continuous internal assessment earned during the semester concerned. For each subject 25 marks are allotted for internal assessment and 75 marks are allotted for Board Examination.

9. Continuous Internal Assessment:

A . For Theory Subjects:

The Internal Assessment marks for a total of 25 marks, which are to be distributed as follows:

i. Subject Attendance

5 Marks

(Award of marks for subject attendance to each subject theory/practical will as per the range given below)

80%	-	83%	1	Mark
84%	-	87%	2	Marks
88%	-	91%	3	Marks
92%	-	95%	4	Marks
96%	-	100%	5	Marks

ii) Test # 10 Marks

2 Tests each of 2 hours duration for a total of 50 marks are to be conducted. Out of which the best one will be taken and the marks to be reduced to:

05 marks

The Test – III is to be the Model test covering all the five units and the marks so obtained will be reduced to:

05 marks

Total 10 marks

TEST	UNITS	WHEN TO CONDUCT	MARKS	DURATION
Test I	Unit – I & II	End of 6 th week	50	2 Hrs
Test II	Unit – III & IV	End of 12 th week	50	2 Hrs
Test III	Model Examination - Compulsory Covering all the 5 Units. (Board Examination-question paper- pattern).	End of 15 th week	75	3 Hrs

- From the Academic year 2015-2016 onwards.

Question Paper Pattern for the Periodical Test: (Test - I & Test-II)

With no choice:

PART A type questions: 4 Questions X 2 mark 8 marks

PART B type questions: 4 Questions X 3 marks 12 marks

PART C type questions: 3 Questions X 10 marks 30 marks

Total 50 marks

-----10 Marks

iii) Assignment

For each subject Three Assignments are to be given each for 20 marks and the average marks scored should be reduced for 10 marks

All Test Papers and assignment notebooks after getting the signature with date from the students must be kept in the safe custody in the Department for verification and audit. It should be preserved for 2 Semesters and produced to the flying squad and the inspection team at the time of inspection/verification.

B. For Practical Subjects:

c)

The internal assessment mark for a total of 25 marks which are to be distributed as follows:-

a) Attendance : **5 Marks**

(Award of marks as same as Theory subjects)

b) Procedure/ observation and tabulation/

Other Practical related Work : 10 Marks
Record writing : 10 Marks

TOTAL : 25 Marks

.___

- All the Experiments/exercises indicated in the syllabus should be completed and the same to be given for final board examinations.
- The Record for every completed exercise should be submitted in the subsequent Practical classes and marks should be awarded for 20 for each exercise as per the above allocation.
- At the end of the Semester, the average marks of all the exercises should be calculated for 20 marks and the marks awarded for attendance is to be added to arrive at the internal assessment mark for Practical. (20+5=25 marks)
- The students have to submit the duly signed bonafide record note book/file during the Practical Board Examinations.
- All the marks awarded for assignment, Test and attendance should be entered in the Personal Log Book of the staff, who is handling the subject. This is applicable to both Theory and Practical subjects.

10. Life and Employability Skill Practical:

The Life and Employability Skill Practical with more emphasis is being introduced in IV Semester for Circuit Branches and in V Semester for other branches of Engineering.

Much Stress is given to increase the employability of the students:

Internal assessment Mark

..... 25 Marks

11. Project Work:

The students of all the Diploma Programmes (except Diploma in Modern Office Practice) have to do a Project Work as part of the Curriculum and in partial fulfillment for the award of Diploma by the State Board of Technical Education and Training, Tamilnadu. In order to encourage students to do worthwhile and innovative projects, every year prizes are awarded for the best three projects i.e. institution wise, region wise and state wise. The Project work must be reviewed twice in the same semester.

a) Internal assessment mark for Project Work & Viva Voce:

Project Review I ... 10 marks
Project Review II ... 10 marks

Attendance ... **05 marks** (award of marks same as

theory subjects pattern)

25 marks

Total ... 25 marks

Proper record to be maintained for the two Project Reviews, and It should be preserved for 2 Semesters and produced to the flying squad and the inspection team at the time of inspection/verification.

b) Allocation of Mark for Project Work & Viva Voce in Board Examination:

Viva Voce ... 30 marks

Marks for Report Preparation, Demo ... **35 marks**

Total **65 marks**

Total **65 illarks**

c) Written Test Mark (from 2 topics for 30 minutes duration): \$

i) Environment Management 2 questions X 2 ½ marks = 5 marks

il) Disaster Management 2 questions X 2 ½ marks = **5 marks**

10marks

\$ - Selection of Questions should be from Question Bank, by the External Examiner. No choice need be given to the candidates.

Project Work & Viva Voce in Board -- 65 Marks

Examination

Written Test Mark (from 2 topics for 30 -- **10 Marks** minutes duration)

TOTAL -- 75 Marks

A neatly prepared PROJECT REPORT as per the format has to be submitted by individual during the Project Work & Viva Voce Board examination.

12. Scheme of Examinations:

The Scheme of examinations for subjects is given in Annexure - II.

13. Criteria for Pass:

- 1. No candidate shall be eligible for the award of Diploma unless he/she has undergone the prescribed course of study successfully in an institution approved by AICTE and affiliated to the State Board of Technical Education & Training, Tamil Nadu and pass all the subjects prescribed in the curriculum.
- 2. A candidate shall be declared to have passed the examination in a subject if he/she secures not less than 40% in theory subjects and 50% in practical subject out of the total prescribed maximum marks including both the internal assessment and the Board Examination marks put together, subject to the condition that he/she secures at least a minimum of 30 marks out of 75 marks in the Board's Theory examinations and a minimum of 35 marks out of 75 marks in the Board Practical Examinations.

14. Classification of successful candidates:

Classification of candidates who will pass out the final examinations from April 2018 onwards (Joined in first year in 2015-2016) will be done as specified below.

First Class with Superlative Distinction:

A candidate will be declared to have passed in **First Class with Superlative Distinction** if he/she secures not less than 75% of the marks in all the subjects and passes all the semesters in the first appearance itself and passes all subjects within the stipulated period of study 3/3½/4 years (Full Time/Sandwich/Part Time) without any break in study.

First Class with Distinction:

A candidate will be declared to have passed in **First Class with Distinction** if he/she secures not less than 75% of the aggregate of marks in all the semesters put together and passes all the semesters except the I and II semesters in the first

appearance itself and passes all the subjects within the stipulated period of study 3/3½/4 years (Full Time/Sandwich/Part Time) without any break in study.

First Class:

A candidate will be declared to have passed in **First Class** if he/she secures not less than 60% of the aggregate marks in all semesters put together and passes all the subjects within the stipulated period of study $3/3\frac{1}{2}$ / 4 years (Full Time/Sandwich/Part Time) without any break in study.

Second Class:

All other successful candidates will be declared to have passed in **Second Class**.

The above mentioned classifications are also applicable for the Sandwich / Part-Time students who pass out Final Examination from October 2018 /April 2019 onwards (both joined in First Year in 2015-2016)

15. <u>Duration of a period in the Class Time Table:</u>

The duration of each period of instruction is 1 hour and the total period of instruction hours excluding interval and Lunch break in a day should be uniformly maintained as 7 hours corresponding to 7 periods of instruction (Theory & Practical).

16. Seminar:

For seminar the total seminar 15 hours(15 weeks x 1hour) should be distributed equally to total theory subject per semester(i.e 15 hours divided by 3/4 subject). A topic from subject or current scenario is given to students. During the seminar hour students have to present the paper and submit seminar material to the respective staff member, who is handling the subject. It should be preserved for 2 Semesters and produced to the flying squad and the inspection team at the time of inspection/verification.

ANNEXURE I CURRICULUM OUTLINE

THIRD SEMESTER

		HOURS PER WEEK					
SUBJECT CODE	SUBJECT	Theory Hours	Tutorial/ Drawin	Practical Hours	Total Hours		
34031	Electronic devices and circuits @	6	-	-	6		
34032	Electrical circuits and Instrumentation	6	-	-	6		
34033	Programming in "C"	5	-	-	5		
34034	Electronic devices and circuits Practical #	-	-	4	4		
34035	Electrical circuits and Instrumentation Practical	-	-	4	4		
34036	Programming in "C" Practical	-	-	5	5		
34037	Computer Application Practical for Electronics	-	-	4	4		
	Seminar	1	-	-	1		
	TOTAL	18	-	17	35		

@ Common with EEE, ICE and Mechatronics

Common with EEE and Mechatronics

FOURTH SEMESTER

			HOURS PER WEEK				
SUBJECT CODE	SUBJECT	Theory Hours	Tutorial/ Drawing	Practica I Hours	Total Hours		
34041	Industrial Electronics	5	-	-	5		
34042	Communication Engineering	6	-	-	6		
34043	Digital Electronics #	5	-	-	5		
34044	Linear Integrated Circuits	4	-	-	4		
34045	Industrial Electronics and communication Practical	-	-	5	5		
34046	Integrated Circuits Practical #	-	-	5	5		
30002	Life and Employability Skill Practical *	-	-	4	4		
	Seminar	1	-	-	1		
	TOTAL	21	-	14	35		

Common with EEE and Mechatronics

* Common for all branches

FIFTH SEMESTER

SUBJECT	SUBJECT	HOURS PER WEEK			
CODE		Theory	Tutorial/ Drawing	Practical Hours	Total
34051	Advanced Communication Systems	6	-	-	6
34052	Microcontroller @	6	-	-	6
34053	Very Large Scale Integration	5	-	-	5
	Elective I		-	-	
34071	1.Digital Communication				
34272	2.Programmable Logic Controller @	5	-	-	5
34073	3.Electronic Systems Design				
34055	Advanced Communication Systems Practical	-	-	4	4
34056	Microcontroller Practical @	-	-	4	4
34057	Very Large Scale Integration Practical	1	-	4	4
	Seminar	1	-	-	1
	Total	23	-	12	35

@ Common with EEE, ICE and Mechatronics

SIXTH SEMESTER

SUBJECT	2	HOURS PER WEEK					
CODE	SUBJECT	Theory	Tutorial/ Drawing	Practical Hours	Total		
34061	Computer Hardware Servicing and Networking	6	-	-	6		
34062	Test Engineering \$	6	-	-	6		
	Elective II		-	-			
34081 34082 34083	1.Television Engineering 2 Bio Medical Instrumentation 3.Mobile communication	5	-	-	5		
34064	Computer Hardware Servicing and Networking Practical	-	-	4	4		
34065	Test Engineering Practical \$	-	-	4	4		
34066	Embedded Systems Practical	-	-	5	5		
34067	Project Work	-	-	4	4		
	Seminar	1	-	-	1		
	Total	18	-	17	35		

\$ - Common with ICE

ANNEXURE- II SCHEME OF THE EXAMINATION THIRD SEMESTER

	Exa		nination	Marks		of ırs
SUBJECT CODE	SUBJECT	Inter nal asse ss- ment	Board Exam Marks	Total Mark	Minimum for pass	Duration of Exam Hours
34031	Electronic devices and circuits @	25	75	100	40	3
34032	Electrical circuits and Instrumentation	25	75	100	40	3
34033	Programming in "C"	25	75	100	40	3
34034	Electronic devices and circuits Practical #	25	75	100	50	3
34035	Electrical circuits and Instrumentation Practical	25	75	100	50	3
34036	Programming in "C" Practical	25	75	100	50	3
34037	Computer Application Practical for Electronics	25	75	100	50	3
	TOTAL	175	525	700		

[@] Common with EEE, ICE and Mechatronics

[#] Common with EEE and Mechatronics

FOURTH SEMESTER

		Examin	-			
SUBJECT CODE	SUBJECT	Internal assessme nt marks	Board Exam Marks	Total Mark	Minimum for pass	Duration of Exam Hours
34041	Industrial Electronics	25	75	100	40	3
34042	Communication Engineering	25	75	100	40	3
34043	Digital Electronics #	25	75	100	40	3
34044	Linear Integrated Circuits	25	75	100	40	3
34045	Industrial Electronics and communication Practical	25	75	100	50	3
34046	Integrated Circuits Practical #	25	75	100	50	3
30002	Life And Employability Skill Practical *	25	75	100	50	3
	TOTAL	175	525	700		

Common with EEE and Mechatronics

^{*} Common for all branches

FIFTH SEMESTER

	Examination Marks					ion of Hours
SUBJECT CODE	SUBJECT	assessment	Board Exam Marks	Total Mark	Minimum for pass	Duration of Exam Hours
34051	Advanced Communication Systems	25	75	100	40	3
34052	Microcontroller @	25	75	100	40	3
34053	Very Large Scale Integration	25	75	100	40	3
	Elective I					
34071	Digital Communication					
34272	Programmable Logic Controller @	25	75	100	40	3
34073	Electronic Systems Design					
34055	Advanced Communication Systems Practical	25	75	100	50	3
34056	Microcontroller Practical @	25	75	100	50	3
34057	Very Large Scale Integration Practical	25	75	100	50	3
	Total	175	525	700		

@ Common with EEE, ICE and Mechatronics

SIXTH SEMESTER

CUD IECT		Exa	minatio	n Marks	_	of rs
SUBJECT CODE	SUBJECT	Internal assess- ment marks		Total Mark	Minimum for pass	Duration of Exam Hours
34061	Computer Hardware Servicing and networking	25	75	100	40	3
34062	Test Engineering \$	25	75	100	40	3
	Elective II					
34081	1.Television Engineering					
34082	2.Bio medical Instrumentation \$	25	75	100	40	3
34083	3.Mobile Communication					
34064	Computer Hardware Servicing and Networking Practical	25	75	100	50	3
34065	Test Engineering practical \$	25	75	100	50	3
34066	Embedded Systems Practical	25	75	100	50	3
34067	Project Work	25	75	100	50	3
	Total	175	525	700		

\$ - Common with ICE

ANNEXURE- I CURRICULUM OUTLINE 3040: DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING (PART TIME)

THIRD SEMESTER

Subject	Subject	HOURS PER WEEK					
Code		Theory	Tutorial/ Drawing	Practical	Total		
34031	Electronic Devices and Circuits	4			4		
34032	Electrical Circuits and Instrumentation	4			4		
30016	Engineering Graphics - I		4		4		
34034	Electronic Devices and Circuits practical			3	3		
34035	Electrical Circuits and Instrumentation practical			3	3		
	TOTAL	8	4	6	18		

FOURTH SEMESTER

Subject	Subject	HOURS PER WEEK					
Code		Theory	Tutorial/ Drawing	Practical	Total		
34033	Programming in "C"	4			4		
34043	Digital Electronics	4			4		
30026	Engineering Graphics - II		4		4		
34036	Programming in "C" Practical			3	3		
34037	Computer application practical for Electronics			3	3		
	TOTAL	8	4	6	18		

FIFTH SEMESTER

Subject	Subject		HOURS PER WEEK					
Code		Theory	Tutorial/ Drawing	Practical	Total			
34041	Industrial Electronics	4			4			
34042	Communication Engineering	4			4			
34044	Linear Integrated Circuits	4			4			
34045	Industrial Electronics & Communication Engineering practical			3	3			
34046	Integrated Circuits practical			3	3			
	TOTAL	12		6	18			

SIXTH SEMESTER

Subject	Subject	HOURS PER WEEK				
Code		Theory	Tutorial/ Drawing	Practical	Total	
34051	Advanced Communication System	4			4	
34052	Microcontroller	4			4	
34055	Advanced communication system Practical			4	4	
34056	Microcontroller practical			3	3	
30002	Life And Employability Skill Practical			3	3	
	TOTAL	8 - 10 18				

SEVENTH SEMESTER

Subject	Subject	HOURS PER WEEK				
Code		Theory	Tutorial/ Drawing	Practical	Total	
34053	Very Large Scale Integration	4			4	
34071 34272	Elective – I 1.Digital Communication 2. Programmable Logic Controller	4			4	
34073	3. Electronic Systems Design					
34061	Computer Hardware Servicing and Networking	4			4	
34057	Very Large Scale Integration Practical			3	3	
34064	Computer Hardware Servicing and Networking Practical			3	3	
	TOTAL	12		6	18	

EIGHTH SEMESTER

Subject	Subject	HOURS PER WEEK					
Code		Theory	Tutorial/ Drawing	Practical	Total		
34062	Test Engineering	4			4		
	Elective – II				4		
34081	1.Television Engineering	4					
34082	2. Biomedical Instrumentation	4					
34083	3.Mobile Communication						
34066	Embedded Systems Practical			4	4		
34065	Test Engineering Practical			3	3		
34067	Project Work			3	3		
	TOTAL	8		10	18		

3040: DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING (PART TIME)

THIRD SEMESTER

			Marks			
Subject Code	SUBJECT	Internal Assessment	Board Examination	Total	Minimum for pass	Duration of Exam Hours
34031	Electronic Devices and Circuits	25	75	100	40	3
34032	Electrical Circuits and Instrumentation	25	75	100	40	3
30016	Engineering Graphics - I	25	75	100	40	3
34034	Electronic Devices and Circuits practical	25	75	100	50	3
34035	Electrical Circuits and Instrumentation practical	25	75	100	50	3

FOURTH SEMESTER

			Marks			
Subject Code	SUBJECT	Internal Assessment	Board Examination	Total	Minimum for pass	Duration of Exam Hours
34033	Programming in "C"	25	75	100	40	3
34043	Digital Electronics	25	75	100	40	3
30026	Engineering Graphics - II	25	75	100	40	3
34036	Programming in "C" Practical	25	75	100	50	3
34037	Computer application practical for Electronics	25	75	100	50	3

FIFTH SEMESTER

			Marks			
Subject Code	SUBJECT	Internal Assessment	Board Examination	Total	Minimum for pass	Duration of Exam Hours
34041	Industrial Electronics	25	75	100	40	3
34042	Communication Engineering	25	75	100	40	3
34044	Linear Integrated Circuits	25	75	100	40	3
34045	Industrial Electronics & Communication Engineering practical	25	75	100	50	3
34046	Integrated Circuits practical	25	75	100	50	3

SIXTH SEMESTER

		Marks				
Subject Code	SUBJECT	Internal Assessment	Board Examination	Total	Minimum for pass	Duration of Exam Hours
34051	Advanced Communication System	25	75	100	40	3
34052	Microcontroller	25	75	100	40	3
34055	Advanced communication system Practical	25	75	100	50	3
34056	Microcontroller practical	25	75	100	50	3
30002	Life And Employability Skill Practical	25	75	100	50	3

SEVENTH SEMESTER

		Marks				
Subject Code	SUBJECT	Internal Assessment	Board Examination	Total	Minimum for pass	Duration of Exam Hours
34053	Very Large Scale Integration	25	75	100	40	3
34071 34272 34073	Elective – I 1.Digital Communication 2. Programmable Logic Controller 3. Electronic Systems Design	25	75	100	40	3
34061	Computer Hardware Servicing and Networking	25	75	100	40	3
34057	Very Large Scale Integration Practical	25	75	100	50	3
34064	Computer Hardware Servicing and Networking Practical	25	75	100	50	3

EIGHTH SEMESTER

			Marks			_
Subject Code	SUBJECT	Internal Assessment	Board Examination	Total	Minimum for pass	Duration of Exam Hours
34062	Test Engineering	25	75	100	40	3
34081 34082 34083	Elective – II 1.Television Engineering 2. Biomedical Instrumentation 3.Mobile Communication	25	75	100	40	3
34066	Embedded Systems Practical	25	75	100	50	3
34065	Test Engineering Practical	25	75	100	50	3
34067	Project Work	25	75	100	50	3

Board Examination - Question paper pattern

Common for all theory subjects

Time: 3 Hrs Max. Marks: 75

<u>PART A</u> - (1 to 8) 5 Questions are to be answered out of 8 questions for 2 marks each.(Question No. 8 will be the compulsory question and can be asked from any one of the units)(From each unit maximum of two 2 marks questions alone can be asked)

<u>PART B</u> - (9 to 16)5 Questions are to be answered out of 8 questions for 3 marks each. (Question No. 16 will be the compulsory question and can be asked from any one of the units) (From each unit maximum of two 3 marks questions alone can be asked)

<u>PART C</u> - (17 to 21) Five Questions will be in the Either OR Pattern. Students have to answer these five questions. Each question carries 10 marks. (Based on the discretion of the question setter, he/she can ask two five mark questions (with sub division A & sub division B) instead of one ten marks question if required)

III SEMESTER

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

II YEAR

M - SCHEME

III SEMESTER

2015-2016 onwards

ELECTRONIC DEVICES AND CIRCUITS

CURRICULAM DEVELOPMENT CENTRE

M-SCHEME

(Implemented from the Academic year 2015 - 2016 onwards)

Course Name: Electronics and Communication Engineering

Subject Code : 34031

Semester : III Semester

Subject title : ELECTRONIC DEVICES AND CIRCUITS

TEACHING AND SCHEME OF EXAMINATION:

Number of Weeks/ Semester : 15 weeks

	Instruction		Examination			
Subject	Hrs./	rs./ Hrs./				
	Week	Semester	Internal Assessment	Board Examination	Total	Duration
Electronic Devices and Circuits	6	90	25	75	100	3 Hrs

Topics and allocation of hours

UNIT	TOPIC	TIME (HRS)
I	Semiconductor and Diodes	16
П	Bipolar Junction Transistor	15
Ш	Transistor oscillators and FET and UJT	17
IV	SCR,DIAC,TRIAC and MOSFET	16
V	Opto Electronic Devices and Wave shaping Circuits	16
	Revision, Tests and Model Exam (3+4+3 Hrs)	10
Total		90

RATIONALE:

Every Electronics Engineer should have sound knowledge about the components used in Electronics Industry. This is vital in R&D Department for chip level troubleshooting. To meet the industrial needs, diploma holders must be taught about the most fundamental subject, Electronic devices and Circuits. By studying this subject, they will be skilled in handling all types of electronic devices and able to apply the skill in electronics system.

OBJECTIVES:

On completion of the following units of syllabus contents, the students must be able to:

- Study the working principle of PN junction diode and transistor
- Understand the working principle of different types of rectifiers, different transistor configurations and differentiate various types of amplifiers
- Study the performance of special devices like UJT, FET
- > Study the performance of different transistor oscillators
- Study the performance of SCR, DIAC, and TRIAC
- Study the performance and types of MOSFET
- Study the different modes of operations of MOSFET
- Know the construction and working principle of optoelectronic devices
- Study the performance of solar cell with principle and applications
- Explain the concept of wave shaping circuits
- Study the working principle of clippers and clampers

34031 - ELECTRONIC DEVICES AND CIRCUITS

Unit	Name of the topic	Hrs
1	Semiconductor and Diodes: Semiconductor-Definition, classification, intrinsic and extrinsic N type & p type – drift current &diffusion current diodes – PN junction diode – forward and Reverse bias characteristics – specification – zener diode construction & working Principle-characteristics - zener break down-avalanche break down- zener Diode as a voltage regulator –applications- specifications	10
	Rectifier – introduction-classification of rectifiers-half wave rectifier-full wave Rectifier(center tapped, bridge)-(no mathematical equations)-comparison-Applications-filters-C, LC and PI filters	6
2	Bipolar junction Transistor: Transistor – NPN and PNP transistor – operation-transistor as an amplifier-transistor as a switch – transistor biasing – fixed bias, collector base bias, self bias – CB,CE,CC configurations – characteristics - comparison between three configurations in terms of input impedance, output impedance, current gain, voltage gain – classification of amplifiers-	10
	RC coupled amplifier – emitter follower and its application – negative feedback Concept, effect of negative feedback – types of negative feedback connections	5
3	Transistor Oscillators and FET and UJT: Transistor oscillator – Classifications – Condition for oscillations (Barkhausen criterion) – General form of LC oscillator – Hartley Oscillator – Colpitts Oscillator – RC Phase shift oscillator- Crystal oscillator. Field Effect Transistor – construction – working principle of FET – difference Between FET and BJT – classification of FET – characteristics of FET – Applications – FET amplifier (common source amplifier). Uni Junction Transistor – construction – equivalent circuit – operation – Characteristics – UJT as a relaxation oscillator	11 6
4	SCR, DIAC, TRIAC & MOSFET: SCR – introduction – working – VI-characteristics -comparison between SCR and transistor – SCR as a switch, controlled rectifier. TRIAC working principle Characteristics – DIAC – characteristics – DIAC as bi-directional switch. MOSFET – types & characteristics of N channel MOSFET and P channel MOSFET- Characteristics of enhancement and depletion mode MOSFET – MOSFET as a switch.	9
5	Applications of SCR,TRIAC, DIAC and MOSFET. Opto Electronics Devices and wave shaping circuits: Classification of opto electronic devices – symbols, Characteristics, working of LDR, LED, 7 segment LED and LCD– opto coupler - Photo transistor. Clipper, Clamper Circuits and waveforms only – Solar Cell - Principles -Applications.	16

Astable, Monostable and Bi-stable Multivibrators using Transistors -Schmitt Trigger using Transistors.	
Revision , Test and Model exam	10

Text Books:

- Electronics Devices & Circuits by Salivahanan S, N.Suresh Kumar, A.Vallavaraj
 Tata McGraw Publication 3rd Edition 2016
- 2. Electronics Devices and circuit theory by Boyestad & Nashelsky, PHI, New Delhi 2009

Reference Books:

- 1. Electronic Principles by Malvino,-Tata McGraw Hill Publication 2010.
- 2. Electronic Devices & Circuits by Allen Mottershed An Introduction, PHI
- 3. Electronics Devices & Circuits by Jacob Millman and Halkias3rd Edition 2010, Tata McGraw Hill publication
- 4. Optical Fiber Communication by GerdKeise 5th Edition, Tata McGraw Hill Publication

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

II YEAR

M SCHEME

III SEMESTER

2015-2016 onwards

ELECTRICAL CIRCUITS AND INSTRUMENTATION

CURRICULAM DEVELOPMENT CENTRE

M-SCHEME

(Implemented from the Academic year 2015-2016 onwards)

Course Name: Electronics and Communication Engineering

Subject Code : 34032

Semester : III Semester

Subject Title : ELECTRICAL CIRCUITS AND INSTRUMENTATION

TEACHING AND SCHEME OF EXAMINATION:

Number of Weeks/ Semester : 15 weeks

Subject	Ins	truction	Examination Marks			
	Hrs Week	Hrs Semester	Internal Assessment	Board Examination	Total	Duration
Electrical Circuits and Instrumentation	6	90	25	75	100	3 Hrs

TOPICS AND ALLOCATION:

UNIT	TOPIC	TIME(HRS)
I	DC Circuits and Theorems	16
II	AC Circuits and Resonance	16
III	Transformers and Machines	16
IV	Measuring Instruments and CRO	15

V	Transducers, Sensors & Test Instruments	15		
	Revision – Test			
	90			

RATIONALE:

This subject enables the students with concepts of DC, AC circuits and fundamentals of Electrical Machines. The subject also deals with concepts, principles and working of analog and digital electronic measuring instruments. The introduction of this subject will enable the students to be well exposed to a wide area of various electronic measuring instruments and a thorough knowledge of the fundamentals of electrical circuits.

OBJECTIVES:

- To study ohm's law and Kirchhoff's laws.
- > To study the circuit theorems
- > To learn about series and parallel Circuits.
- > To learn various terms related to AC circuits.
- > To understand concept of AC circuits
- > To learn about series and parallel resonance circuits.
- > To study about transformer and its working.
- To understand the working of DC machine.
- To know about Induction motors and stepper motor.
- To understand the basic measuring instruments.
- > To learn about bridge circuits.
- To discuss about CRO and its types.
- > To learn about transducers and its various types.
- To study about sensors.
- To know about test instruments.

34032 ELECTRICAL CIRCUITS AND INSTRUMENTATION DETAILED SYLLABUS

UNIT	NAME OF THE TOPIC	HOURS
1	D.C. CIRCUITS AND THEOREMS Definition and unit for voltage, current, power, resistance, conductance, resistivity- Ohm's law – only simple problems in ohm's law- Kirchoff's current law and voltage law. Series circuits –parallel circuits, series parallel circuits. Mesh Method (simple problems) Thevenin's - Norton's theorems, Super position and Maximum power transfer theorem – Statement and Explanation (simple problems)	8
	A.C. CIRCUITS AND RESONANCE A.C. CIRCUITS AC through single pure resistance, pure inductance, pure capacitance - voltage and current relationship and (to mention only) the equation for power and power factor in each case (only simple problems). Definition for impedance, reactance, admittance, conductance, impedance, Phase angle, power factor and	11
2	power. AC circuits – Derivation for impedance and admittance, power and power factor in Series and Parallel R-L ,R-C ,R-L-C circuits. Analysis of Parallel R-L circuit, R-C circuit, R-LC circuit (qualitative treatment only). RESONANCE Resonance- series resonance – parallel resonance - condition for resonance- resonant frequency-Q factor - resonance curve-bandwidth (only simple problems).	5
3	TRANSFORMERS AND MACHINES TRANSFORMERS	8

	Transformer – Ideal transformer – construction - working	
	principle –EMF equation Losses in transformer- core loss,	8
	copper loss- Efficiency- Regulation OC, SC test on	
	transformer -List of applications (qualitative treatment only)	
	MACHINES	
	D.C. Machines - DC-Generator -Working principle - Types-	
	Applications DC motor- working principle - types- applications	
	(qualitative treatment only)	
	Single phase induction motor- types- construction and	
	principle of operation of capacitor start induction motor-	
	Applications - stepper motor-working principle-uses	
	(qualitative treatment only)- Universal Motor (qualitative	
	7.	
	treatment only)	
	Difference between single phase and three phase supply.	
	MEASURING INSTRUMENTS AND CRO	
	MEASURING INSTRUMENTS	
	Definition for Measurement, Instrument- Errors in	
	Measurement - Calibration- Indicating instruments – Basic	
	forces for indicating instruments - construction and operation	
	of permanent magnet moving coil Instrument -Advantages –	
	Disadvantages of PMMC - Shunts and Multipliers - DC	
	ammeter-DC voltmeter-voltmeter sensitivity.	8
	Bridges- Types - Wheat stone bridge - applications -Universal	
	impedance bridge arrangements to measure R, L,C	
4	CRO	
-	CRO- Block diagram and principle of operation of CRO-	7
	operation of CRT Electrostatic focusing- Electrostatic	-
	deflection (no derivation) - Block diagram of vertical deflection	
	system- Applications of CRO - Types of CRO- Block diagram	
	and operation of dual trace CRO- Dual beam CRO -	
	· ·	
	Comparison between dual trace and dual beam CRO – Digital	
	storage Oscilloscope - Block diagram- advantage. Block	
	diagram-working principle of Function Generator	
	TRANSDUCERS, SENSORS & TEST INSTRUMENTS	
	TRANSDUCERS	
	Transducers –Classification of transducers	
	Strain gauge - Types-uses.	_
	Construction, operation and applications of photo electric	8
	transducer, LVDT, RVDT and Load cell.	
	Principle of working of Thermocouple- Temperature	
	measurement using thermocouple - list of applications-	
	Principle of working of Thermistor –Temperature	
	measurement using thermistors - Types (NTC, PTC) - List of	
_	applications.	
5	SENSORS	7
	IR range sensor – IR proximity sensor- Ultrasonic range	
	sensor- Touch Sensor.	
	TEST INSTRUMENTS	
	Digital voltmeter –Types (to list only) - Basic block diagram	
	of DVM - Block diagram of Digital multimeter- Advantages	
	over analog instruments - Block diagram of Digital frequency	
	counter– Simple PC based Data Acquisition system – Block	
L	countoi	

diagram.	
Revision – Tests	
Trevision Tests	12

REFERENCE BOOKS:

SL.No	Title	Author	Publisher with Edition
1.	Electrical Technology	B.L. Theraja	Division of Nirja constructions and development co. (P) Ltd., - 1994.
2.	Electric Circuit Theory	Dr. M. Arumugam, N. Premkumaran	Kanna Publisher, Delhi -1997
3.	Electronic Measurements and Instrumentation	R.K.Rajput	S. Chand (Third Edition)- 2009
4.	Electronic Measurements and Instrumentation	Sanjay Talbar & Akhilesh Upadhyaya.	Dhanpat Rai Publications (p) Ltd-2004
5.	Modern Electronic Instrumentation and Measurement Techniques	Albert D.Hel frick and Willam David cooper	Prentice Hall of India Pvt. Ltd., 1996
6.	Electrical and Electronic- Measurements and Instrumentation	A.K.Sawheney	Dhanpat rai and Sons -1993.
7.	Electronic Instrumentation	Kalsi	Kalsi H S. Tata McGraw-Hill Education, 2004
8.	Measurement systems- Application and Design	Ernest O. Doebelin	McGraw hill -2004
9.	Transducers and Instrumentation	D.V.S.Murty	McGraw hill -2004
10.	Electrical & Electronics Measurements and instrumentation	Umesh Sinha	Satyaprakashan Tech,1992

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

M-SCHEME 2015- 2016

PROGRAMMING IN "C"

DIRECTORATE OF TECHNICAL EDUCATION GOVERNMENT OF TAMILNADU

M-SCHEME (Implemented from the Academic year 2015-2016 onwards)

Course Name : Electronics and Communication Engineering

Subject code : **34033**Semester : III Semester

Subject title : PROGRAMMING IN "C"

TEACHING AND SCHEME OF EXAMINATION:

Number of Weeks/ Semester: 15 weeks

Subject	Instru	uction	Examination			
	Uro/	Uro/		Marks		
PROGRAMMING IN "C"	Hrs/ week	Hrs/ semester	INTERNAL ASSESMENT	BOARD EXAM	TOTAL	Duration
	5	75	25	75	100	3Hrs

TOPICS & ALLOCATION OF HOURS

Unit No.	Topics	No. of Hours
I	PROGRAM DEVELOPMENT AND INTRODUCTION TO C	12
П	C OPERATOR, I/O STATEMENT and DECISION MAKING,	13
III	ARRAYS AND STRINGS and FUNCTIONS	14
IV	STRUCTURES AND UNIONS, DYNAMIC MEMORY	13
	MANAGEMENT	
V	"C" PROGRAMMING	13
	TEST AND REVISION	10
	TOTAL	75

RATIONALE

C' is the most widely used computer language, which is being taught as a core course. C is general purpose structural language that is powerful, efficient and compact, which combines features of high level language and low-level language. It is closer to both Man and Machine. Due to this inherent flexibility and tolerance it is suitable for different development environments. Due to these powerful features, C has not lost its importance and popularity in recently developed and advanced software industry. C can also be used for system level programming and it is still considered as first priority programming language. This course covers the basic concepts of C. This course will act as "Programming concept developer" for students. It will also act as "Backbone" for subjects like OOPS, Visual Basic, Windows Programming, JAVA etc.

OBJECTIVES

At the end of the Course, the students will be able to

- Define Program, Algorithm and flow chart
- List down and Explain various program development steps
- > Write down algorithm and flow chart for simple problems.
- Describe the concepts of Constants, Variables, Data types and operators.
- > Develop programs using input and output operations.
- Understand the structure and usage of different looping and branching statements.
- Define arrays and string handling functions.
- Explain user-defined functions, structures and union.
- > To understand the dynamic data structure and memory management.

34033- PROGRAMMING IN "C" DETAILED SYLLABUS

UNIT	NAME OF THE TOPICS	HOURS
1	Program Development & Introduction to C 1.1 Program, Algorithm & flow chart:- Program development cycle- Programming language levels & features. Algorithm — Properties & classification of Algorithm, flow chart — symbols, importance & advantage of flow chart.	3 Hrs
	1.2 Introduction to C: - History of C – features of C- structure of C program – Compile, link & run a program. Diagrammatic representation of program execution process.	4 Hrs
	1.3 Variables, Constants & Data types:. C character set-Tokens-Constants- Key words – identifiers and Variables – Data types and storage – Data type Qualifiers – Declaration of Variables – Assigning values to variables- Declaring variables as constants-Declaring variables as volatile- Overflow & under flow of data.	5 Hrs
II	C OPERATORS, I/O STATEMENT and DECISION MAKING 2.1 C operators:-Arithmetic, Logical, Assignment .Relational, Increment and Decrement, Conditional, Bitwise, Special Operator precedence and Associativity. C expressions – Arithmetic expressions – Evaluation of expressions- Type cast operator	3 Hrs
	2.2 I/O statements: Formatted input, formatted output, Unformatted I/O statements	3 Hrs
	2.3 Branching:- Introduction – Simple if statement – if –else – else-if ladder , nested if-else-Switch statement – go statement.	4 Hrs
	2.4 Looping statements:- While, do-while statements, for loop, break &continue statement.	3 Hrs
III	ARRAYS and STRINGS FUNCTIONS 3.1 Arrays:- Declaration and initialization of One dimensional, Two dimensional and Character arrays – Accessing array elements – Programs using arrays.	3 Hrs
	3.2 Strings :- Declaration and initialization of string variables, Reading String, Writing Strings – String handling functions (strlen(),strcat(),strcmp()) – String manipulation programs.	3 Hrs
	3.3 Built –in functions: -Math functions – Console I/O functions – Standard I/O functions – Character Oriented functions. 3.4 User defined functions:- Defining functions & Needs-, Scope and	3 Hrs
	Life time of Variables, , Function call, return values, Storage classes, Category of function – Recursion.	5 Hrs

IV	STRUCTURES AND UNIONS, DYNAMIC MEMORY MANAGEMENT	
	4.1 Structures and Unions:- Structure – Definition, initialization, arrays of structures, Arrays with in structures, structures within structures, Structures and functions – Unions – Structure of Union – Difference between Union and structure.	7 Hrs
	4.2 Dynamic Memory Management:- introduction – dynamic memory allocation – allocating a block memory (MALLOC) – allocating multiple blocks of memory (CALLOC) –releasing the used space: free – altering the size of a block (REALLOC).	6 Hrs
٧	"C" PROGRAMMING	
	5.1 Program to find Sum of Series using "while" loop- Program to find Factorial of N numbers using functions- Program to swap the values of two variables.	5 Hrs
	5.2 Program to implement Ohms Law- Program to find Resonant Frequency of RLC Circuit- Program to find equivalent resistance of three resistances connected in series and parallel- Program to draw the symbol of NPN transistor using Graphics- Program to draw the symbol of diode using Graphics.	8 Hrs
	Revision & Test	10 hrs

Text book:

1. Programming in ANSI C 4E by Prof. E. BALAGURUSAMY, the TATA McGRAW -HILL publications.

REFERNCES

S.No	Title	Author	Publisher	Year of Publication /Edition
1	Programming and Problem solving using C	ISRD Group, Lucknow	Tata Mc- GrawHill, New Delhi Sixth Reprint	2010
2	Let us C	Yeswanth	Kanetkar BPB Publications	Fourth Revised Edition
3	A TextBook on C	E.Karthikeyan	PHI Private Limited, New Delhi	2008
4	Programming in C	D.Ravichandran	New Age International Publishers	C FirstEdition 1996 Reprint2011
5	Computer Concepts And Programming in C	Dr.S.S.Khandare	S.Chand & Company Ltd. New Delhi	First Edition 2010
6	Complete Knowledge in C	Sukhendu Dey, Debobrata Dutta	Narosa Publishing House, New Delhi	Reprint2010
7	Programming in C	Reema Theraja	Oxford University Press	First Edition 2011
8	Practical C Programming	Steve Oualline	O'Reilly, Shroff Publishers	Eleventh Indian ReprintOct2 010

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

II YEAR

M SCHEME

III SEMESTER

2015-2016 onwards

ELECTRONIC DEVICES AND CIRCUITS PRACTICAL

CURRICULAM DEVELOPMENT CENTRE

M-SCHEME

(Implemented from the Academic year 2015-2016 onwards)

Course Name: Electronics and Communication Engineering

Subject code: 34034

Semester : III

Subject title : Electronic Devices and Circuits Practical

TEACHING AND SCHEME OFEXAMINATION:

Number of Weeks/

Semester : 15 weeks

	Ins	truction	Examination			
Subject		Hrs./		Marks		
Subject		Semester	Internal	Board Examination	Total	Duration
Electronic Devices and Circuits Practical	4	60	25	75	100	3 Hrs

ALLOCATION OF MARKS

CIRCUIT DIAGRAM : 20

CONNECTION : 25

EXECUTION & HANDLING OF EQUIPMENT : 15

OUTPUT / RESULT : 10

VIVA – VOCE : 05

TOTAL : 75

EQUIPMENTS REQUIRED:

S.NO	Name of the Equipments	Range	Required Nos.
1.	DC Regulated power supply	0-30V, 1A	10
2.	High Voltage Power Supply	0-250V, 1A	2
3.	Signal Generator	1MHz	4
4.	Dual trace CRO	20 MHz / 30MHz	5
5.	Digital Multi meter	-	10
6.	DC Voltmeter (Analog/Digital)	Different Ranges	15
7.	DC Ammeter (Analog/Digital)	Different Ranges	15
8.	Computers for simulation Experiments		2
9.	Software - PSPICE/ multisim / orcad / tin	a(Any 1)	

34034 - ELECTRONIC DEVICES AND CIRCUITS PRACTICAL

Note:

1. At least 5 experiments should be constructed using breadboard/soldering STUDY EXPERIMENT (Not for Examination)

Identify and check the working condition of passive & active components and switches.

List of experiments to be conducted

- Construct and plot the VI characteristics of PN junction diode and find the cut-in voltage.
- Construct and plot the VI characteristics of Zener diode and find the break down voltage.
- 3. Construct and plot the regulation characteristics (by varying either load or line voltage) of Half wave rectifier with and without filters.
- 4. Construct and plot the regulation characteristics (by varying either load or line voltage) of Full wave rectifier with and without filters.
- 5. Construct and plot the regulation characteristics (by varying either load or line voltage) of Bridge rectifier with filters.
- 6. Construct and draw the Input and output characteristics of CE Transistor configuration and find its input & output resistance.
- 7. Construct and draw the frequency response of RC coupled amplifier and determine the 3-db bandwidth.
- 8. Construct and plot the drain characteristics of JFET and find its pinch off voltage.
- 9. Construct and plot UJT characteristics and find its Ip and Vv.
- 10. Construct and draw SCR characteristics and find its break over voltage.
- 11. Construct and plot the DIAC and TRIAC characteristics.
- 12. Construct and draw the waveforms of positive clipper and clamper.
- 13. Construct and draw the characteristics of LDR and a photo transistor.
- 14. Simulate the half wave, full wave and bridge rectifier using the simulation tool like PSPICE/multisim/orcad/tina
- 15.Simulate the astable and mono stable multi vibrator using the simulation tool like PSPICE/multisim/orcad/tina

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

IIYEAR

III SEMESTER

M - SCHEME

2015 - 2016 onwards

ELECTRICAL CIRCUITS AND INSTRUMENTATION PRACTICAL

CURRICULAM DEVELOPMENT CENTRE

M-SCHEME

(Implemented from the Academic year 2015-2016 onwards)

Course Name: Electronics and Communication Engineering

Subject Code: 34035

Semester : III Semester

Subject Title: ELECTRICAL CIRCUITS AND INSTRUMENTATION PRACTICAL

TEACHING AND SCHEME OF EXAMINATION:

Number of Weeks/ Semester : 15 Weeks

	Instruction		Examination Marks			
Subject						
	Hrs	Hrs	Internal	Board	Total	Duration
	Week	Semester	Assessment	Examination	Total	Daration
Electrical						
Circuits and	4	60	25	75	100	3 Hrs
Instrumentation Practical						

ALLOCATION OF MARKS

CIRCUIT DIAGRAM : 20

CONNECTION : 25

EXECUTION & HANDLING OF EQUIPMENT: 15

OUTPUT / RESULT : 10

VIVA – VOCE : 05

TOTAL : 75

MAJOR EQUIPMENT REQUIRED

S.No	Name of the Equipments	Range	Required Nos
1.	DC regulated power supply	(0-30V),1A	8
2.	Signal generators	1MHZs	3
3.	Dual trace CRO	20MHZ	4
4.	DC Voltmeter	(0-15V)	8
5.	DC Ammeter	(0-300μΑ)	6
6.	DC Ammeter	(0-100mA)	8
7.	Digital Multimeter	-	4
8.	Galvanometer	-	1
9.	Decade Resistance Box	-	1

34035 - ELECTRICAL CIRCUITS AND INSTRUMENTATION PRACTICAL

LIST OF EXPERIMENTS

Note: Atleast 5 experiments should be constructed using breadboard/ soldering.

- 1. Construct a circuit to verify Ohm's law.
- 2. Construct a circuit to verify Kirchoff's voltage and current law.
- 3. Construct a circuit to verify Super position theorem.
- 4. Construct a circuit to verify Thevenin's Theorem.
- 5. Construct a circuit to verify Norton's Theorem.
- 6. Construct a circuit to verify Maximum power transfer Theorem.
- 7. Construct and test the performance of series resonant circuit and parallel resonant circuit.
- 8. Calibrate the given ammeter and voltmeter.
- 9. Construct and test the performance of Wheatstone bridge.
- 10. Measure the amplitude and frequency of signals using dual trace CRO.
- 11. Measure the frequency and phase angle using CRO by Lissajous figure.
- 12. Test the performance of LVDT.
- 13. Measure strain using strain gauge.
- 14. Determine the characteristics of a thermistor
- 15. Test the performance of a load cell.

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

M-SCHEME 2015- 2016

PROGRAMMING IN "C" PRACTICAL

CURRICULAM DEVELOPMENT CENTRE

M-SCHEME (Implemented from the Academic year 2015-2016 onwards)

Course Name : Electronics and Communication Engineering

Subject code : 34036

Semester : III Semester

Subject title : PROGRAMMING IN "C" PRACTICAL

TEACHING AND SCHEME OF EXAMINATION:

Number of Weeks/ Semester: 15 weeks

Subject	Instruction		Examination			
PROGRAMMING	Hrs/ Hrs/			Marks		
IN "C"	week	semester	INTERNAL	BOARD	TOTAL	Duration
PRACTICAL	week	Semester	ASSESMENT	EXAM	IOIAL	
PRACTICAL	5	75	25	75	100	3Hrs

RATIONALE:

This subject is a fundamental for the student to learn how to write a program in high level language . so it will be useful for Electronics and Communication Engineers to write coding and to develop the software. Further practice for writing simple program for Electronics application is insisted.

OBJECTIVES:

At the end of the Course, the students will be able to

Analyze the given problem.

Think the logic to solve the given problem.

Describe the concepts of constants, variables, data types and operators.

Develop programs using input and output operations.

Write programs using different looping and branching statements.

Write programs based on arrays.

Write programs for solving simple equations used in circuit theory.

34036- PROGRAMMING IN "C" PRACTICAL LIST OF EXPERIMENTS

- 1. Write C language program to find the solution of a quadratic equation.
- 2. Write C language program to find whether the given number is a positive number, negative number or zero.
- 3. Write C language program to find the sum of series using While loop.
- Write C language program to perform the Arithmetic operation based on the numeric key press using switch case statement. (1-Addition, 2-Subtraction, 3 – multiplication, 4 - Division).
- 5. Write C language program to implement Ohms Law.
- 6. Write C language program to find factorial of given N numbers using function.
- 7. Write C language program to prepare the total marks for N students by reading the Name, Reg.No, Marks 1 to Marks 6 using array of structure.
- 8. Write C language program to swap the values of two variables.
- 9. Write C language program to calculate the equivalent resistance of three resistances connected in series and parallel.
- 10. Write C language program to calculate the equivalent Capacitance of three Capacitors connected in series and parallel.
- 11. Write C language program to find Resonant Frequency of RLC Series and Parallel Circuits.
- 12. Write C language program to find the power factor of series RL circuits.
- 13. Write C language program to find the Q factor for series and parallel resonant circuits.
- 14. Write C language program to draw the symbol of NPN transistor using Graphics.
- 15. Write C language program to draw the symbol of Diode using Graphics.

ALLOCATION OF MARKS

	PROGRAMMING IN "C" PRACTICAL						
No.	Allocation	Marks					
1	Writing Algorithm	20					
2	Writing Program	20					
3	Executing program	25					
3	Result	05					
4	4 Viva Voce 05						
	Total 75						

HARDWARE REQUIRMENT:

Desktop/laptop computers : 15 nos Laser printer : 01 no

Software requirement:

C-compiler and editor

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING II YEAR

M SCHEME

III SEMESTER

2015-2016 onwards

COMPUTER APPLICATIONS PRACTICAL IN ELECTRONICS

CURRICULAM DEVELOPMENT CENTRE

M- SCHEME

(to be implemented to the student Admitted from the Year 2015-2016 on wards)

Course Name : ELECTRONICS AND COMMUNICATION ENGINEERING

Subject Code : 34037

Semester : III

Subject title : COMPUTER APPLICATIONS PRACTICAL IN ELECTRONICS

TEACHING & SCHEME OF EXAMINATION:

No. of weeks per Semester: 15 Weeks

	Instru	uction		Examination		
Course	msuu	iction	Max. Marks			Duration
	Hours/ Week		Continuous Assessment	Semester- End Examination	Total	Duration
COMPUTER APPLICATIONS PRACTICAL IN ELECTRONICS	4 Hrs	60 Hrs	25	75	100	3 Hrs

RATIONALE:

The Computer Application Practical in Electronics facilitates the necessary knowledge and skills regarding creating, working and maintaining the documents, analyzing the data with charts manipulation of databases, presentation of documents with audio visual effects in a computer and provides the latest tools and technologies in helping the students to fetch better employment.

OBJECTIVES:

On completion of the following exercises, the students must be able to

Understand the Windows operating systems, word processing

- > Analyze the data sheet
- Create and manipulate the database Prepare PowerPoint presentation
- > Understand Internet concepts and usage of e-mail
- Understand simulation of characteristics of various electronic components using electronics device automation tools.

ALLOCATION OF MARKS

	Max. Marks	
CONTENT	Section I	Section II
Procedure	15	15
Execution	15	15
Result with printout	5	5
viva	5	
Total	75	

LIST OF EXPERIMENTS

SECTION I

Exercise in WINDOWS:

- 1. a. Install screen saver and change the monitor resolution by 1280X960
 - b. Setting wall papers
 - c. Creating, moving, deleting and renaming a folder
 - d. Copying files into CD/DVD
 - e. Recording and saving an audio file
 - f. Set/Change the date and time.

Exercise in WORD PROCESSING:

- 2. Create a standard covering letter and use mail merge to generate the customized letters for applying to a job in various organizations. Also, create a database and generate labels for the applying organizations.
- 3. Create a news letter of three pages with two columns text. The first page contains some formatting bullets and numbers. Set the document background colour and add 'confidential' as the watermark. Give the document a title which should be displayed in the header. The header/ footer of the first page should be different from other two pages. Also, add author name and date/ time in the header. The footer should have the page number.

Exercises in SPREADSHEET

- 4. Create a table of records with columns as Name and Donation Amount. Donation amount should be formatted with two decimal places. There should be at least twenty records in the table. Create a conditional format to highlight the highest donation with blue colour and lowest donation with red colour. The table should have a heading.
- 5. Prepare line, bar and pie chart to illustrate the subject wise performance of the class for any one semester.

Exercise in DATABASE

6. Prepare a payroll for employee database of an organization with the following

details:

Employee Id, Employee name, Date of Birth, Department and Designation, Date of appointment, Basic pay, Dearness Allowance, House Rent Allowance and other deductions if any.

Perform simple queries for different categories.

Exercise in POWER POINT

7. Create a Presentation on a mini project with ten different slide transitions with sound effect.

Exercise in INTERNET

- a. Create e-mail id and perform the following.
 - Write an e-mail inviting your friends to your birthday party.
 - ii. Make your own signature and add it to the e-mail message.
 - iii. Add a word attachment of the venue route
 - b. Send the e-mail to at least 2 of your friends.

SECTION II

Exercises in SIMULATION TOOLS

- 9. Simulate VI characteristics of PN junction diode.
- 10. Simulate VI characteristics of LED.
- 11. Simulate VI characteristics of Zener diode.
- 12. Simulate VI characteristics of NPN transistor.
- 13. Simulate VI characteristics of FET.
- 14. Simulate VI characteristics of UJT.
- 15. Simulate VI characteristics of SCR.

SOFTWARE REQUIREMENTS

SECTION I

Operating System : Windows XP or Windows Vista or Windows 7 / Linux

Office Package : Microsoft office 2000 or Office 2003 or Office 2007/Open

Office

SECTION II

SPICE simulation tools : PSPICE or Multisim or Lab VIEW / OrCAD /

TINA

HARDWARE REQUIREMENTS

Desktop/Laptop Computer System : 15 Nos

Laser Printer : 1 No

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

II YEAR

M SCHEME

IV SEMESTER

2015-2016 onwards

INDUSTRIAL ELECTRONICS

CURRICULAM DEVELOPMENT CENTRE

M-SCHEME

(Implemented from the Academic year 2015-2016 onwards)

Course Name: Electronics and Communication Engineering

Subject code : 34041

Semester : IV

Subject title : INDUSTRIAL ELECTRONICS

TEACHING AND SCHEME OF EXAMINATION:

Number of Weeks/ Semester : 15 weeks

	Instruc	ction	Examination			
	, Hrs./					
Subject	Hrs./ Week	Sem ester	Internal Assessm ent	Board Examination	Total	Duration
INDUSTRIAL ELECTRONICS	5	75	25	75	100	3 Hrs

TOPICS AND ALLOCATION:

Unit	Topic	Time (Hrs.)
I	Power devices and Trigger circuits	13
II	Converters and choppers	13
III	Inverters and applications	13
IV	Programmable logic controller	14
V	DCS	12
VI	Revision – Tests – Model (3 +4+3)	10
	TOTAL	75

RATIONALE

The rationale behind the modifying this subject is to give clear explanation of power devices and circuits that are widely used today in modern industry. It also gives exposure to PLCs & DCS which can perform various control functions in industrial environments.

OBJECTIVES:

On completion of the following units of the syllabus contents, the students must be able to

- Study working principle of MOSFET, IGBT
- Study the methods of triggering
- learn about converters and its types.
- understand commutation concepts in SCR
- learn about choppers.
- Study about inverters and types.
- > understand the concept of HVDC.
- > know about SMPS.
- > understand about UPS and its types.
- > learn about PLC.
- discuss about ladder diagrams.
- know about the architecture of DCS
- know about LCU and display units of DCS

34041 -- INDUSTRIAL ELECTRONICS

DETAILED SYLLABUS

UNIT	NAME OF THE TOPIC				
	POWER DEVICES AND TRIGGER CIRCUITS				
1	POWER DEVICES	7			
	Insulated gate bipolar transistor (IGBT), MOSFET and GTO - Symbol, principle of working, VI characteristics and applications. Comparison between power MOSFET, power transistor and power IGBT[5](page – 298) TRIGGER CIRCUITS Triggering of SCR - Gate triggering –Types –Concepts of DC triggering, AC triggering, Pulse gate triggering – Pulse transformer in trigger circuit – Electrical isolation by opto isolator - Resistance capacitor firing circuit and waveform, Synchronized UJT triggering (ramp triggering) circuit and waveform.	6			
	CONVERTERS AND CHOPPERS (Qualitative treatment only)				
	CONVERTERS	9			
2	Converters – Definition – Single phase Half controlled bridge converter with R load and RL load - importance of flywheel diode – Single phase fully controlled bridge converter with resistive load – voltage and current waveforms – Single phase fully controlled bridge converter with RL load – voltage and current waveforms Commutation- Natural commutation – Forced commutation – Types CHOPPERS				
	Chopper – Definition –principle of DC chopper operation – Typical chopper circuit (Jones chopper) –Applications of DC chopper – Principle of working of single phase AC chopper - Chopper using MOSFET.				
3	INVERTERS & APPLICATIONS	8			
	INVERTERS inverter with resistive load – Single phase inverter with RL load –				
	Methods to obtain sine wave output from an inverter- Output voltage				
	control in inverters - McMurray inverter – advantages – Parallel				
	INVERTER APPLICATIONS				
	SMPS Types - Block diagram of SMPS – advantages and	_			
	disadvantages. UPS-Type (ON Line, OFF Line), Comparison Battery Banks.	5			

	PROGRAMMABLE LOGIC CONTROLLER	
4	Evolution – advantages over relay logic [webb - 7]Introduction to PLC – Relays- Block diagram of PLC - PLC Programming Languages - Arithmetic Functions – (add, sub, mul, div, sqr)[petruzela](P304-313) – Comparison of functions[Webb - 7] (P190-199) - Basics of Input and output module (digital input and output module) - Logic functions- AND logic, OR logic, NAND logic, EX-OR logic -symbols used in ladder logic diagram. Ladder programming – Ladder diagram for simple systems – Star delta starter, Conveyer control and Lift control. PLC interface with GSM	14
5	<u>Distributed Control Systems</u> Evolution - Hybrid system Architecture(Page -7) - Central system	12
	Architecture(Page - 7) – Generalized Distributed Control - Architecture(Page 10,11) – comparison of architectures(Page 12) – Local control unit(Page 19) –Basic Elements of LCU(Page 19-21) – Displays – Plant – Area – Group- Loop(Page 189-201) – Features of DCS – Advantages of DCS (SK singh Page 698)	12
	Revision-Test	10

TEXT BOOKS

- Power Electronics by M.H.Rashid PHI Publication-3rd Edition-2005
 Industrial Electronics and control by Biswanath Paul –PHI publications-2nd Edition -2010
- 3. Programmable Logic Controllers "Frank D.Petruzela "PHI publications 4. Power Electronics by Dr.P.S.Bimbhra, Khanna publishers -2nd Edition-1998

REFERENCE BOOKS

- 1. Industrial & Power Electronics By Harish C.Rai, Umesh Publication, 5th Edition 1994
- 2. 'Programmable Logic Controllers Principles and applications John W. Webb. Ronald A. Reis PHI publications 2017
- 3. Programmable Logic Controller Pradeep Kumar & Srivashtava- BPB **Publications**

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

II YEAR

M SCHEME

IV SEMESTER

2015-2016 onwards

COMMUNICATION ENGINEERING

CURRICULAM DEVELOPMENT CENTRE

M-SCHEME

(Implemented from the Academic year 2015-2016 onwards)

Course Name: Electronics and Communication Engineering

Subject code: 34042

Semester : IV Semester

Subject title : COMMUNICATION ENGINEERING

TEACHING AND SCHEME OF EXAMINATION:

Number of Weeks/ Semester: 15 weeks

Subject	Ins	truction		Examination		
	Hrs /	Hrs/	N	Marks		
Communication Engineering	week	semester	INTERNAL ASSESMENT	BOARD EXAM	TOTAL	Duration
	6	90	25	75	100	3Hrs

TOPICS AND ALLOCATION:

Unit	TOPIC	Hrs
-	Networks, Antenna and Propagation	16
II	Introduction to Modulation and	16
	Amplitude Modulation	
Ш	Frequency and Pulse Modulation	16
IV	Audio Systems	15
V	Video systems	15
	Revision – Test	12
	TOTAL	90

RATIONALE:

Today communication engineering has developed to a great extent that there is always the need for study of various communication concepts. This subject fulfills the need for students to have a thorough knowledge of various types of networks, modulation, audio systems and video systems.

OBJECTIVES:

On completion of the following units of the syllabus contents, the students must be able to

- Understand the principles of working of antennas
- Understand the theory of Propagation
- Understand the concept of modulation
- Study Amplitude Modulation Process
- Learn about different types of AM Transmitter & receiver
- Study the Frequency Modulation Process
- Learn about different types of FM Transmitters & Receivers
- Understand the concept Phase Modulation
- Understand the concept Pulse Modulation
- Learn Different types of Microphones
- Learn Different types of Loudspeakers
- Understand the different methods of Audio Recording & Reproduction
- Understand the principles of Monochrome & colour TV Related Topics

34042 - COMMUNICATION ENGINEERING

DETAILED SYLLABUS

UNIT	NAME OF THE TOPIC	HOURS
1	Networks: Symmetrical and asymmetrical networks, characteristic impedance and propagation constant. Equalizer: Definition, types and applications. Attenuator: Definition, types - symmetrical T and Pi attenuators- simple problems - applications. Filters: Definition, types - circuit elements and cutoff frequencies of LPF, HPF and BPF - simple problems-applications. Antennas: Definition-types of antenna: Mono pole and dipole antenna, directional and omni directional antenna ,Dipole arrays, Yagi antenna, parabolic antenna- Antenna parameters: directive gain, directivity, radiation pattern and polarization-applications. Propagation: Ground wave propagation, sky wave propagation and space wave propagation	16
2	UNIT 2: Introduction to Modulation and Amplitude Modulation Introduction to Modulation: Definition- Need for modulation- types of modulation - Frequency spectrum - relationship between wavelength and frequency. Amplitude modulation: Definition - Simple signal diagram for amplitude modulation, Expression for amplitude modulation, expression for modulation index – sidebands: DSB,SSB and VSB. AM Transmitter: Types of transmitters: high level AM transmitter, low level AM transmitter and SSB transmitter. AM Receiver: Types of receiver: TRF receiver, super heterodyne receiver and SSB receiver Selection of IF-AGC types: simple and delayed AGC.	16
3	UNIT 3: Frequency and Pulse Modulation Frequency modulation: Definition-Simple signal diagram for frequency modulation, Expression for frequency modulation, expression for modulation index. FM Transmitter: Types of transmitters: Direct FM transmitter, Indirect FM transmitter and stereophonic FM transmitter.	16

	FM Receiver: stereophonic FM receiver-AFC.	
	Comparison of FM and AM.	
	Pulse modulation: Definition- Types: Generation and	
	detection of PAM, PWM, PPM,PCM & DPCM	
	UNIT 4: Audio systems	
	Microphones: Definition-Construction and performance of	
	the following microphones: carbon, condenser, piezo-	
	electric, moving coil and velocity ribbon. Loud speakers: Definition-Constructional details of	
4	dynamic cone type, Horn type and electro-static loud	15
-	speakers, woofer, midrange and tweeter, cross-over	10
	network. Surround-sound systems.	
	Audio recording and reproduction: Compact disc	
	system- MP3 system - DVD system - stereophonic system	
	- Hi-Fi system principles-DTS.	
	Wantahan Talaria and Canada and Indiana	
	Monochrome Television: Scanning principles -	
5	synchronization - aspect ratio- composite video signal- TV broadcasting standards. TV transmitter- TV receiver.	15
	Color TV : Principles of color transmission and reception-	13
	color CCD camera, LCD, LED display unit – plasma	
	display - Principles of Handy cam, CCTV and cable TV.	
	Revision & Test	12

REFERENCE BOOKS

- 1. Networks lines and fields John D.Ryder, PHI
- 2. Electronic communication Systems Kennedy TMH
- 3. Electronic Communication Dennis Roddy and John colen PHI
- 4. Fundamentals of Acoustics Kingsler & frey Wiley Eastern ltd.
- 5. TV and Video engineering Arvind M.Dhake TMH.
- 6. Communication Electronics Principles and application Louis E Frenzel, Third

Edition, Tata McGrawhill publication

7. Audio and Video system – Principles, maintenance and Troubleshooting by R.Gupta

Second Edition McGrawHill Education (P) Ltd.

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

II YEAR

M SCHEME

III SEMESTER

2015-2016 onwards

DIGITAL ELECTRONICS

CURRICULAM DEVELOPMENT CENTRE

M SCHEME

(Implemented from the Academic year 2015-2016 onwards)

Course Name : Electronics and Communication Engineering

Subject Code : 34043

Semester : IV Semester

Subject Title : DIGITAL ELECTRONICS

TEACHING AND SCHEME OF EXAMINATION:

Number of Weeks/ Semester : 15 weeks

	Instruction		Examination			
Subject			Marks			
Subject	Hrs Week	Hrs Semester	Internal Assess ment	Board Examination	Total	Duration
Digital Electronics	5	75	25	75	100	3 Hrs

TOPICS AND ALLOCATION:

UNIT	TOPIC	TIME(HRS)
I	Number System, Boolean Algebra, Logic Gates and Digital Logic Families	13
II	Combinational Logic	13
III	Sequential Logic	13
IV	Memory Devices	12
V	Microprocessor – 8085	12
	Revision Test	12
	TOTAL	75

RATIONALE:

The subject of Digital Electronics holds applications in all branches of engineering. This subject will impart in depth knowledge of Number systems, Logics of Combinational & Sequential circuits and also about various & recent Memory devices and microprocessor. The concept of Digital Electronics will be implemented in all processor.

OBJECTIVES:

- To understand various Number System.
- > To understand basic Boolean postulates and laws.
- > To understand the De-Morgan's theorem.
- To understand the concept of Karnaugh Map.
- > To Learn about Basic logic Gates.
- > To Study about Boolean techniques.
- > To learn the different digital logic families
- > To learn arithmetic circuits-adder/subtractor, BCD adder.
- > To understand the encoder/decoder & MUX / DEMUX
- ➤ To understand the concept of parity Generator, and checkers
- > To understand various types of flip-flops.
- > To understand various types of counters.
- To understand various modes of shift registers
- ➤ To understand the concept of RAM & ROM and its types.
- > To understand the history and need of Microprocessor.
- To understand the internal architecture details of 8085 Microprocessor.
- > To know the instruction set of 8085
- > To understand Interrupt Structure of 8085

34043 DIGITAL ELECTRONICS

DETAILED SYLLABUS

UNIT	NAME OF THE TOPIC	HRS
	NUMBER SYSTEM AND BOOLEAN ALGEBRA Binary, Octal, Decimal, Hexadecimal - Conversion from one to another. Binary codes – BCD code, Gray code, Excess 3 code. Boolean Algebra- Boolean postulates and laws- De-Morgan's theorem-Simplification of Boolean expressions using Karnaugh map (up to 4 variables-pairs, quad, octets)- Don't care conditions and constructing the	7
1	logic circuits for the Boolean expressions. LOGIC GATES AND DIGITAL LOGIC FAMILIES: Gates – AND, OR, NOT, NAND, NOR, EX-OR, EX-NOR - Implementation of logic functions using gates - Realization of gates using universal gates-Simplification of expression using Boolean techniques- Boolean expression for outputs. Digital logic families –Fan in , Fan out, Propagation delay - TTL,CMOS Logics and their characteristics - comparison and applications -Tristate logic.	6
2	Arithmetic circuits - Binary – Addition, subtraction, 1's and 2's complement - Signed binary numbers- Half Adder- Full Adder- Half Subtractor - Full Subtractor- Parallel and serial Adders- BCD adder. Encoder and decoder – 3 to 8 decoder, BCD to seven segment decoder-Multiplexer- basic 2 to 1 MUX, 4 to 1 MUX, 8 to 1 MUX - applications of the MUX – Demultiplexer - 1 to 2 demultiplexer, 1 to 4 demultiplexer, 1 to 8 demultiplexer - Parity Checker and generator.	7
3	SEQUENTIAL CIRCUITS FLIP FLOPS – SR, JK, T, D FF, JK- MS FF - Triggering of FF – edge & level , Counters – 4 bit Up - Down Asynchronous / ripple counter - Decade counter- Mod 3, Mod 7 counter. 4 bit Synchronous Up - Down counter - Johnson counter, Ring counter	7
	REGISTERS 4-bit shift register- Serial IN Serial OUT- Serial IN Parallel OUT - Parallel IN Serial OUT- Parallel IN Parallel OUT	6
4	MEMORY DEVICES Classification of memories - RAM organization - Address Lines and Memory Size- Read /write operations- Static RAM - Bipolar RAM cell-Dynamic RAM- SD RAM- DDR RAM. Read only memory - ROM organization- Expanding memory- PROM-EPROM- and EEPROM - Flash memory- Anti Fuse Technologies.	12

5	MICROPROCESSOR – 8085 Evolution of microprocessor 8085 – Architecture of 8085- Instruction sets- Addressing modes - Memory mapped I/O and I/O mapped I/O and its Comparison. Machine cycle – Opcode fetch - memory read- memory write- I/O read, I/O write - Instruction cycle (Timing diagram) for MOV r1, r2 instruction. Interrupts (types & Priorities)	12
	Revision & Test	12

REFERENCE BOOKS:

SL.No	Title	Author	Publisher with Edition
1.	Principles of Digital Electronics	K.Meena	PHI – 2011
2.	Modern Digital Electronics	R.P.Jains	TMH -2003
3.	Microprocessor architecture programming and application	Ramesh S. Gaonkar,	Wiley Eastern Limited.
4.	Digital principles & Applications	Albert Paul Malvino & Donald P.Leach	TMH - 4 th Edition 2002
5.	Digital Electronics	William H.Gothmann	prentice Hall of India – 2 nd Edition ,1995
6.	Introduction to Microprocessor	Aditya P Mathur	Tata McGraw-Hil publishing Company Limited
7.	Digital Electronics	Roger L.Tokheim Macmillan	McGraw hill -1994
8.	Digital Electronics- an introduction to theory and practice	William H.Gothmann	PHI 1998

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

II YEAR

M SCHEME

IV SEMESTER

2015-2016 onwards

LINEAR INTEGRATED CIRCUITS

CURRICULAM DEVELOPMENT CENTRE

M-SCHEME

(Implemented from the Academic year 2015 - 2016 onwards)

Course Name: Electronics and Communication Engineering

Subject code: 34044

Semester : IV Semester

Subject title: LINEAR INTEGRATED CIRCUITS

TEACHING AND SCHEME OF EXAMINATION:

Number of Weeks/ Semester: 15 weeks

Subject	Inst	ruction		Examina	tion	
		Hrs/	Marks			
Linear integrated circuits	Hrs/ week	semest er	INTERNAL ASSESMEN T	BOAR D EXAM	TOTA L	Duratio n
	4	60	25	75	100	3Hrs

TOPICS AND ALLOCATION:

Unit	TOPICS	Hrs
I	Introduction to operational amplifiers	10
II	Opamp applications	10
III	PLL & Waveform generators	11
IV	D/A and A/D Converters	10
V	Special Function ICS	9
	Revision – Test	10
	TOTAL	60

RATIONAL IC technology needs the fundamentals of Integrated Circuits for students regarding the application and special function ICs.

OBJECTIVES:

- > To understand the basics of operational amplifier.
- > To study the op-amp applications.
- > To understand PLL & waveform generators.
- > To study D/A and A/D converters and special function ICs.

34044 LINEAR INTEGRATED CIRCUITS

DETAILED SYLLABUS

UNIT	NAME OF THE TOPIC	HOURS
1	UNIT 1: INTRODUCTION TO OPERATIONAL AMPLIFIERS Integrated circuit - Classification of IC - Advantages of IC over discrete components –Types of IC Packages - Operational amplifier IC 741 – Schematic symbol for opamp – pin diagram of IC 741 –Block diagram of an opamp – Characteristics of an Ideal opamp - Simple Equivalent circuit of an opamp – virtual ground – opamp parameters – CMRR –Slewrate Basic linear circuits- Inverting Amplifier, Non Inverting amplifier – Differential Amplifier – sign changer – scale changer.	10
2	UNIT 2: OPAMP APPLICATIONS Summing amplifier- Multiplier – Divider – Voltage follower – comparator – zero crossing detector - Integrator – Differentiator – Voltage to current converter – current to voltage converter – Instrumentation amplifier Waveform generators – square wave, triangular wave, sine wave, saw tooth wave generators. (Qualitative treatment only)	10
3	UNIT 3: PLL & APPLICATIONS (Qualitative treatment only) PLL – Basic principles of PLL – Basic Block schematic of PLL – Lock range – capture rangeBasic components of PLL – Phase detector, LPF –VCO Monolithic VCO 566- Pin diagram –Basic Block diagram of VCO 566. Monolithic PLL 565-Pin diagram - Functional Block diagram of PLL IC 565,Applications of PLL – frequency translation – frequency multiplication	11

4	UNIT 4: D/A AND A/D CONVERTERS Digital to analog converter – Basics of D/A conversion –weighted Resistor D/A Converter – R-2R Ladder D/A Converter – Specifications of DAC-Accuracy, Resolution, Monotonocity, Settling time. A/D CONVERTERS Analog to digital converter – Basics of A/D conversion – sampling – Sample and hold circuit – quantization – Types of A/D converter – Block diagram of Flash, Successive approximation, Ramp, Dual Slope ADC – Specifications of ADC – Accuracy, Resolution, conversion time – Functional Block diagram of IC ADC 0808	10
5	UNIT 5: SPECIAL FUNCTION ICs: (qualitative treatment only) IC 555 Timer – pin diagram of IC 555 – Functional Block diagram of IC555 – Applications – Astable multi vibrator – mono stable multi vibrator – Schmitt trigger. IC voltage regulators – linear fixed voltage regulator – Positive voltage regulator using IC 78xx, negative voltage regulator using IC 79xx General purpose regulator using LM 723-Pin diagram of LM723- Low voltage and High voltage regulator using LM 723.	09
	Revision-Test	10

Text Books:

1. Linear Integrated circuits – D.Roychoudhury&Shail.B. Jain – New age International

Publishers - II Edition - 2004.

2. "Integrated circuits" – K.R. Botkar – KhannaPulbisher's – 1996

REFERENCE BOOKS:

- 1.Introduction to system design using IC "-B.S. Sonde Wiley Eastern Limited
- II Edition- 1992
- 2. "Operational Amplifiers and Linear Integrated circuits" Ramakant .A Gayakwad –

Prentice Hall – 2000.

- 3. Digital Integrated Electronics –Taub&Schlling Mcgraw Hill 1997
- 4. Operational amplifiers and Linear Integrated circuits by Robert F.Coughlin and

Frederick F.Driscoll –PHI –publications –sixth Edition-2009.

5. Linear Integrated Circuits by Salivahanan&V.S.Kanchana Baskaran-TMH-2008

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

II YEAR

M SCHEME

IV SEMESTER

2015-2016 onwards

INDUSTRIAL ELECTRONICS AND COMMUNICATION ENGINEERING PRACTICAL

CURRICULAM DEVELOPMENT CENTRE

M-SCHEME

(Implemented from the Academic year 2015 - 2016 onwards)

Course Name: Electronics and Communication Engineering

Subject Code : 34045

Semester : IV Semester

Subject title : INDUSTRIAL ELECTRONICS AND COMMUNICATION

ENGINEERING

TEACHING AND SCHEME OF EXAMINATION:

Number of Weeks/ Semester : 15 weeks

	Ins	truction				
Subject	Hrs./	Hrs./	Marks			
	Week	Semester	Internal Assessment	Board Examination	Total	Duration
Industrial Electronics and Communication Engineering	5	75	25	75	100	3 Hrs

MAJOR EQUIPMENT REQUIRED

S.NO	Name of the Equipment	Range	Required Nos
1.	Regulated Power supply	0-30v	5
2.	Dual trace CRO	-	2
3.	Signal generator	-	2
4.	PAM kit	-	1
5.	PCM kit	-	1
6.	PLC	-	2
7	Computers	-	2
8	Software:PSPICE/ multisim/orcad/tina	-	-

ALLOCATION OF MARKS

CIRCUIT DIAGRAM : 20

CONNECTION : 20

EXECUTION & HANDLING OF

EQUIPMENT : 20

OUTPUT / RESULT : 10

VIVA – VOCE : 05

TOTAL : 75

34045 - INDUSTRIAL ELECTRONICS & COMMUNICATION ENGINEERING PRACTICAL

LIST OF EXPERIMENTS:

Note: At least 5 experiments should be constructed using breadboard or by soldering.

INDUSTRIAL ELECTRONICS PRACITCAL

- 1. Phase control characteristics of SCR and testing a commutation circuit.
- 2. Construct a Lamp dimmer using TRIAC (in Bread Board Only)
- 3. Construct and test a MOSFET based PWM chopper circuit
- 4. Construct and test an IC based buck converter using PWM
- 5. Write and implement a simple ladder logic program using digital inputs and outputs for PLC
- 6. Write and implement a simple ladder logic program for interfacing a lift control with PLC.
- 7. Write and implement a simple ladder logic program for interfacing a conveyer control with PLC
- 8. Write and implement a simple ladder logic program using timer and counter with branching and subroutines with PLC.

COMMUNICATION ENGINEERING PRACTICAL

- 9. Simulate the circuit of AM Modulation and Demodulation using the simulation tool like PSPICE/ multisim/orcad/tina.
- 10. simulate the circuit of FM Modulation and Demodulation using the simulation tool like PSPICE/ multisim/orcad/tina.
- 11. Construct & test Symmetrical t & Pi attenuators.
- 12.4.Construct & test Constant K Passive Low Pass & High Pass Filter.
- 13. Construct & test PAM Generation circuit & Detection circuit.
- 14. Construct & test PCM Transmitter & Receiver circuit.
- 15. Construct & Test a three way cross over network.

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

II YEAR

M SCHEME

IV SEMESTER

2015-2016 onwards

INTEGRATED CIRCUITS PRATICAL

CURRICULAM DEVELOPMENT CENTRE

M-SCHEME

(Implemented from the Academic year 2015-2016 onwards)

Course Name: Electronics and Communication Engineering

Subject code: 34046

Semester : IV Semester

Subject title : INTEGRATED CIRCUITS PRACTICAL

TEACHING AND SCHEME OF EXAMINATION:

Number of Weeks/ Semester: 15 weeks

Subject	Inst	truction		Examina	tion	
Interveted	Hrs/	Hrs/	N	larks		
Integrated Circuits Practical	week	semester	INTERNAL ASSESMENT	BOARD EXAM	TOTAL	Duration
	5	75	25	75	100	3Hrs

ALLOCATION OF MARKS

TOTAL:	75
VIVA – VOCE :	05
OUTPUT / RESULT :	10
EXECUTION & HANDLING OF EQUIPMENT	: 15
CONNECTION:	25
CIRCUIT DIAGRAM :	20

34046 - INTEGRATED CIRCUITS PRACTICAL

List of experiments

Note: At least 5 experiments should be constructed using breadboard

- 1. Verification of truth table of OR, AND, NOT, NOR, NAND, EX-OR gates.
- 2. Realization of basic gates using NAND & NOR gates.
- 3. Realization of logic circuit for a given Boolean expression.
- 4. Half adder, Full adder using IC's.
- 5. Half subtractor, full subtractor using IC's.
- 6. Construction and verification of truth table for Decoder/Encoder.
- 7. Multiplexer/De-multiplexer using multiplexer IC's.
- 8. Parity generator and checker using parity checker/ generator IC's.
- 9. Construction and verification of truth table for RS, D, T & JK flip-flop.
- 10.4- bit ripple counter using FF
- 11. Construct a Single digit Decade Counter with 7 segment display.
- 12. Astable Multi vibrator using IC 555.
- 13. Simulate the Clippers and clampers using the simulation tool like PSPICE/ multisim/orcad/tina.
- 14. simulate the inverting and non inverting amplifier, voltage follower, integrator, differentiator, summing amplifier, difference amplifier(Any 3) using the simulation tool like PSPICE/ multisim/orcad/tina.
- 15. simulate the Hartley and phase shift oscillator, sine, square and triangular waveform generators and precision rectifiers(Any 3) using the simulation tool like PSPICE/ multisim/orcad/tina.

DIPLOMA IN ELECTRONICS AND COMMINICATION ENGINEERING

II YEAR

M - SCHEME

IV SEMESTER

2015 - 2016 onwards

30002 – LIFE AND EMPLOYABILITY SKILL PRACTICAL

CURRICULUM DEVELOPMENT CENTRE

M Scheme

(Being implemented from the Academic Year 2015-2016 onwards)

Course Name : **ELECTRONICS AND COMMUNICATION**

ENGINEERING

Subject Code : 30002

Semester : IV

Subject Title : LIFE AND EMPLOYABILITY SKILLS PRACTICAL

Teaching and Scheme of Examination:

No. of Weeks per Semester: 15 Weeks

	Inst	Instruction Examination			n	
			Marks			
Subject	Hours / Week	Hours / Semeste r	Internal assessmen t	Board Examinatio n	Total	Duration
Life and Employability Skills	4 Hours	60 Hours	25	75	100	3 Hours

Topics and Allocation of Hours:

SI. No.	Section	No. of Hours
1	Part – A Communication	30
2	Part – B Entrepreneurship, Project Preparation, Productivity, Occupational Safety, Health, Hazard, Quality Tools & Labour Welfare	20
3	Part – C Environment, Global Warming, Pollution	10
	TOTAL	60

RATIONALE

Against the backdrop of the needs of the Industries, as wells as based on fulfilling the expectations of the Industries, the Diploma Level students have to be trained directly and indirectly in toning up their competency levels. Proficiency in Communication only, equips them with confidence and capacity to cope with the employment. Hence, there is a necessity to focus on these in the curriculum. At the end of the Course, the student is better equipped to express himself in oral and written communication effectively.

SPECIFIC INSTRUCTIONAL OBJECTIVES

- 1. Emphasize and Enhance Speaking Skills
- 2. Increase Ability to Express Views & Opinions
- 3. Develop and Enhance Employability Skills
- 4. Induce Entrepreneurship and Plan for the Future
- 5. Expose & Induce Life Skills for Effective Managerial Ability

30002 - LIFE AND EMPLOYABILITY SKILLS PRACTICAL SYLLABUS

Unit	Topics	Activity	Hours
		instant sentence making	
		– say expressions/phrases	
		self- introduction /	
	Communication, Listening,	another higher official in	30
I	Training, Facing Interviews,	company	
	Behavioural Skills	describe/explain product	
		 frame questions based 	
		on patterns	
		 make sentences based 	
		on patterns	
		prepare an outline of a	
	Entrepreneurship, Project	project to obtain loan from	
II	Preparation, Marketing Analysis,	bank in becoming an	
	Support & Procurement	entrepreneur	10
		- prepare a resume	
	Productivity – comparison with	search in the website	
	developed countries, Quality	prepare a presentation	
III	Tools, Circles, Consciousness,	- discuss & interact	05
	Management, House Keeping		
	Occupational Safety, Health	search in the website	
15.7	Hazard, Accident & Safety, First-	prepare a presentation	
IV	Aid, Labour Welfare Legislation,	- discuss & interact	05
	Welfare Acts		
		taking down notes / hints	
		 answering questions 	
V	Environment, Global Warming, Pollution	fill in blanks the exact	10
	1 Olidiloli	words heard	

LEARNING STRUCTURE

100 Marks

- -- Focus more on Speaking & Listening Skills
- -- Attention less on Reading & Writing Skills
- -- Apply the skills in fulfilling the Objectives on Focused Topics

a) Listening	25 Marks
 Deductive Reasoning Skills (taking down notes/hints) Cognitive Skills (answering questions) Retention Skills (filling in blanks with exact words heard) 	10 10 05
b) Speaking Extempore/ Prepared	30 Marks
 Personality/Psychological Skills (instant sentence making) Pleasing & Amiable Skills (say in phrases/expressions) Assertive Skills (introducing oneself/others) Expressive Skills (describe/explain things) Fluency/Compatibility Skills (dialogue) Leadership/Team Spirit Skills (group discussion) 	05 05 05 05 05 05
c) Writing & Reading	20 Marks
 Creative & Reasoning Skills (frame questions on patterns) Creative & Composing Skills (make sentences on patterns) Attitude & Aim Skills (prepare resume) Entrepreneurship Skills (prepare outline of a project) 	,
d) Continuous Assessment (Internal Marks) (search, read, write down, speak, listen, interact & discuss)	25 Marks
 Cognitive Skills (Google search on focused topics) Presentation Skills & Interactive Skills (after listening, disc 	cuss)
Note down and present in the Record Note on any 5 topi	ics 10 Marks

INTERNAL MARKS

Attendance

Other activities recorded in the Record note

EXTERNAL MARKS AT END EXAMINATION

10 Marks

05 Marks

25 Marks

75 Marks

MODEL QUESTION

Time: 3 Hours Maximum Marks: 75

A. LISTENING Marks	25
1. Listen to the content and take down notes/hints	10
2. Listen to the content and answer the following questions.	10
3. Listen to the content and fill in the blanks the exact words heard.	05
B. SPEAKING	30
Marks	
1. Say in a sentence instantly on hearing the word (5 words, one after another).	05
2. Say any five expressions commonly used in communication.	05
3. Imagine, a consultant has come to your department.	
Introduce him to your subordinates.	05
4. Explain/describe the product you are about to launch in the market.	05
5. Speak with your immediate boss about the progress you have made.	05
6. Discuss within the group on the topic of focus in the syllabus.	05
C. WRITING & READING Marks	20

1. Frame new questions from the pattern given by changing sets of words with your own.

05

a.	When	Do	you	return?
b.	How	ls	his performance?	
C.	Where	Has	the manager	gone?
d.	What	Is	the progress	today?
e.	Why	Are	the machines	not functioning?

2. Make sentences from the pattern given by changing sets of words with your own. 05

a.	The workers	are	on strike		
b.	The labourers	are paid	well	in this factory	
c.	There	is	a rest room	for the workers	
d.	These	are	the new products	launched	by our company
e.	Almost everyone	come	to the company	on motorbikes	

4. Prepare an outline of a project to obtain a loan. (Provide headings and subheadings) 05

I. Guidelines for setting the question paper:

A. LISTENING :

ONLY TOPICS related to
POLLUTION /
ENVIRONMENT /

GLOBAL WARMING are to be taken.

These topics are common for all the three types of

evaluation.

B. SPEAKING

1. WORDS of common usage

2. Fragments – expression of politeness, courtesy,

cordiality

- 3. Introduce yourself as an engineer with designation or Introduce the official visiting your company/department
- 4. Describe/Explain the product/machine/department
- 5. Dialogue must be with someone in the place of work.
- 6. Group of six/eight

Discuss the focused topic prescribed in syllabus

C. WRITING & READING:

1. Provide five different structures.

Students are to substitute at least one with some

other word/words

2. Provide five different structures.

Students are to substitute at least one with some

other word/words

3. Provide some post related to industries.

4. Outline of the project (skeleton/structure)

Only the various headings and subheadings

Content is not needed

II. Guidelines for recording the material on the Focused Topics in the Record note.

Write in the record note, **on any five topics**, from the list of topics given below. **10 Marks** (5 topics x 10 marks = 50 marks. Thus, the **Average of 5 topics is 10 Marks**)

1. Productivity in Industries – Comparison with developed countries

- 2. Quality Tools, Quality Circles and Quality Consciousness
- 3. Effective Management
- 4. House Keeping in Industries
- 5. Occupational Safety and Hazard
- 6. Occupational Accident and First Aid
- 7. Labour Welfare Legislations
- 8. Labour Welfare Acts and Rights
- 9. Entrepreneurship
- 10. Marketing Analysis, Support and Procurement

LABORATORY REQUIREMENT:

- 1. An echo-free room
- 2. Necessary furniture and comfortable chairs
- 3. A minimum of two Computers with internet access
- 4. A minimum of two different English dailies
- 5. A minimum of Three Mikes with and without cords
- 6. Colour Television (minimum size 29")
- 7. DVD/VCD Player with Home Theatre speakers
- 8. Smart board
- 9. Projector

Suggested Reading:

- 1. Production and Operations Management by S.N. Chary, TMH
- 2. Essentials of Management by Koontz & Weihrich, TMH
- 3. Modern Production / Operations Management by E.S. Buffa and R.K. Sarin, John Wiley &

Sons

- 4. Production Systems: Planning, Analysis and Control by J.L.Riggs, 3rd ed., Wiley.
- 5. Productions and Operations Management by A.Muhlemann, J.Oakland and K.Lockyer,

Macmillan

- 6. Operations Research An Introduction by H.A. Taha, Prentice Hall of India
- 7. Operations Research by J.K.Sharma, Macmillan
- 8. Business Correspondence & Report Writing by R.C. Sharma and K.Mohan, TMH
- 9. How to prepare for Group Discussion & Interview (With Audio Cassette) by Prasad, TMH
- 10. Spoken English A self-learning guide to conversation practice (with Cassette)
- 11. Introduction to Environmental Engineering by Mackenzie, L. Davis and A. David, Cornwell, McgrawHill, 3rd Ed.
- 12. Environmental Engineering by Peary, Rowe and Tchobanoglous, McgrawHill
- 13. Total Quality Management An Introductory Text by Paul James, Prentice Hall
- 14. Quality Control and Applications by Housen & Ghose
- 15. Industrial Engineering Management by O.P. Khanna

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

III YEAR

M SCHEME

V SEMESTER

2015-2016 onwards

ADVANCED COMMUNICATION SYSTEMS

CURRICULAM DEVELOPMENT CENTRE

M-SCHEME

(Implemented from the Academic year 2015 - 2016 onwards)

Course Name: Electronics and Communication Engineering

Subject code: 34051

Semester : V Semester

Subject title : ADVANCED COMMUNICATION SYSTEMS

TEACHING AND SCHEME OF EXAMINATION:

Number of Weeks/ Semester: 15 weeks

	Inst	ruction	Examination			
Subject	Hrs./	Hrs./	Marks			
	Week	Semester	Internal	Board	Total	Duration
			Assessment	Examination		
Advanced						
Communication Systems	6	90	25	75	100	3 Hrs

TOPICS AND ALLOCATION:

Unit	Topic	Time (Hrs)
I	Radar, navigational aids, telephony and fax, facsimile communication system	16
II	Digital Communication and Digital codes	15
III	Optical Communication	16
IV	Satellite Communication and Microwave Communication	17
V	Mobile Communication and Satellite multiple access techniques	16
	Revision, Test	10
	TOTAL	90

RATIONALE

The introduction of this subject will enable the students to learn about the advancement in communication systems. It will give exposure to the various modes of communication viz Radar, Telephone, Fax, digital communication, digital codes, fiber optical communication, satellite communication, microwave communication, mobile communication and Satellite multiple access techniques.

OBJECTIVES

- To understand principles of Radar.
- To understand principles of navigation aids.
- To study electronics exchange and principles of facsimile communication.
 - To study basic digital communication system and digital codes.
 - To learn error detection and correction codes.
 - To learn various digital modulation techniques.
 - To understand optical communication system and discuss about fiber nodes, configurations and losses.
 - To learn optical sources, optical detectors.
 - To discuss the application of fiber optic communication.
 - To study satellite system, orbits, antennas
 - To study about satellite services.
 - To understand fundamentals of microwave communication.
- To study fundamental cellular concepts such as frequency reuse, had off
 - To learn multiple access techniques.
 - To learn digital cellular systems GSM.

34051 ADVANCED COMMUNICATION SYSTEMS

DETAILED SYLLABUS

Units	NAME OF THE TOPIC	HOURS
I	RADAR AND NAVIGATIONAL AIDS: Basic Radar System— Applications — Radar Range Equation (Qualitative Treatment Only) — Factors Influencing Maximum Range — Basic Pulsed Radar System — Block Diagram — Display Methods- A - Scope, PPI Display - Instrument Landing System — Ground Controlled Approach System. TELEPHONY AND FAX: Telephone System—Public Switched Telephone Network (PSTN) - Electronic Switching System — Block Diagram — ISDN — Architecture, Features - Video Phone — Block Diagram. FACSIMILE COMMUNICATION SYSTEM: Facsimile Sender-Cylindrical Scanning — Facsimile Receiver- Synchronization — Phasing - Index Of Cooperation (IOC) - Direct Recording.	16
II	DIGITAL COMMUNICATION: Basic Elements Of Digital Communication System - Block Diagram-Characteristics Of Data Transmission Circuits - Bandwidth Requirement - Speed - Baud Rate - Noise - Crosstalk - Distortion. DIGITAL CODES: ASCII Code - EBCDIC Code - Error Detection Codes - Parity Check Codes - Redundant Codes - Error Correction Codes - Retransmission- Forward Error Correcting Code - Hamming Code - Digital Modulation Techniques - ASK, FSK, PSK, QPSK Modulation/Demodulation Techniques (Only Block Diagram And Operation).	15
III	OPTICAL COMMUNICATION: Optical Communication System – Block Diagram – Advantages Of Optical Fiber Communication Systems – Principles Of Light Transmission In A Fiber Using Ray Theory – Single Mode Fibers, Multimode Fibers – Step Index Fibers, Graded Index Fibers (Basic Concepts Only) – Attenuation In Optical Fibers – Absorption Losses, Scattering Losses, Bending Losses, Core And Cladding Losses Optical Sources – LED - Semiconductor LASER – Principles – Optical Detectors – PIN And APD Diodes - Connectors - Splices – Couplers – Optical Transmitter – Block Diagram – Optical Receiver – Block Diagram - Application Of Optical Fibers – Networking, Industry And Military Applications.	16

IV	SATELLITE COMMUNICATION: Satellite system: Kepler's I,II,II laws – orbits – launching orbits – types - Geostationary synchronous satellites - Advantages – Apogee – Perigee - Active and passive satellite - Earth eclipse of satellite. Antenna: Parabolic reflector antenna – cassegrain antenna. Space segment: Power supply- Attitude control- station keeping – Transponders – TT and C subsystem – Antenna subsystem. Earth segment: Block diagram of Transmit receive earth station - Satellite mobile services - Basics of GPS. MICROWAVE COMMUNICATION: Microwave frequency ranges - microwave devices – Parametric amplifiers –Travelling wave tubes – simple block diagram of microwave transmitter, receiver and microwave link repeater	17
V	MOBILE COMMUNICATION: (Qualitative Treatment only) Cellular telephone– fundamental concepts – Simplified Cellular telephone system - frequency reuse – Interference – Co-channel Interference – Adjacent Channel Interference – Improving coverage and capacity in cellular systems - cell splitting – sectoring – Roaming and Handoff – Basics of blue tooth technology. SATELLITE MULTIPLE ACCESS TECHNIQUES: TDMA, FDMA, CDMA. Digital cellular system – Global system for mobile communications (GSM) –GSM services - GSM System Architecture – Basics of GPRS.	16
Revision & Test		

Reference Books:

- Electronic communication systems Kennedy Davis -Fourth Edition Tata McGraw Hill 1999.
- Electronics communication Dennis Roddy and John coolen Third Edition - PHI - 1988
- Optical fiber communication Gerd Keiser Third Edition McGraw Hill - 2000
- Satellite communication Dr. D.C. Agarwal Third Edition Khanna publishers 1995
- 5 Electronic Communications systems Fundamentals through Advanced - Wayne Tomasi – Fifth
- Edition Pearson Education 2005

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

III YEAR

M SCHEME

V SEMESTER

2015-2016 onwards

MICROCONTROLLER

CURRICULAM DEVELOPMENT CENTRE

M-SCHEME

(Implemented from the Academic year 2015 - 2016 onwards)

Course Name: Electronics and Communication Engineering

Subject code : 34052

Semester : V Semester

Subject title : MICROCONTROLLER

TEACHING AND SCHEME OFEXAMINATION:

Number of Weeks/ Semester: 15 weeks

	Instruction		Examination			
Subject	Hrs./ Hrs./		Marks			
	Week	Semester	Internal Board .		Total	Duration
			Assessment	Examination		
MICROCONTROLLER	6	90	25	75	100	3 Hrs

TOPICS AND ALLOCATION:

Unit	Topic	Time (Hrs.)
I	Architecture & Instruction set of 8051	19
II	Programming Examples	13
III	I/O and Timer	15
IV	Interrupt and Serial Communication	16
V	Interfacing Techniques	19
	Revision – Test	8
	TOTAL	90

RATIONALE:

The exponential growth of Engineering and Technology has benefited the mankind with

extreme sophistication and comfort. To sustain this development, continuous research and

development should take place not only in Engineering and Technology but also in Basic Science

such as Physics.

The various divisions of Physics like Optics, Acoustics, Dynamics, Semiconductor Physics,

Surface Physics, Nuclear Physics, Energy Studies, Materials Science, etc provide the Foundation

by enlightening the Fundamental facts, Principles, Laws and Correct sequence of events to

develop the Engineering and Technology field for the prosperity of human beings.

OBJECTIVES:

- On completion of the following units of syllabus contents, the students must be able to
- Explain Architecture of 8051 Microcontroller.
- Explain the functions of various registers.
- Understand interrupt structure of 8051.
- Understand serial data communication concepts.
- Understand the programming techniques.
- Explain various addressing modes.
- Write simple programs using 8051.
- Understand the block diagram and control word formats for peripheral devices.
- Understand how to interface with RS232C.
- Understand how to interface with 8255.
- Understand various application of 8051 Microcontroller

34052-MICROCONTROLLER

Unit	Name of the Topic	Hours
	ARCHITECTURE & INSTRUCTION SET OF 8051	
	1.1 ARCHITECTURE OF 8051	14 Hrs
	Comparison of Microprocessor and Microcontroller - Block diagram of Microcontroller - Functions of each block - Pin details of 8051 - ALU -ROM- RAM - Memory Organization of 8051 - Special function registers - Program Counter - PSW register - Stack - I/O Ports - Timer - Interrupt -	
I	Serial Port – Oscillator and Clock - Clock Cycle – State - Machine Cycle –Instruction cycle – Reset – Power on Reset – Overview of 8051 family	
	1.2 INSTRUCTION SET OF 8051	
	Instruction set of 8051 – Classification of 8051 Instructions - Data transfer instructions – Arithmetic Instructions – Logical instructions – Branching instructions – Bit Manipulation Instructions	5 Hrs
II	PROGRAMMING EXAMPLES:	
		6 Hrs
	2.1 ASSEMBLER AND ADDRESSING MODES	
	Assembling and running an 8051 program –Structure of Assembly Language –Assembler directives - Different addressing modes of 8051	
	2.2 PROGRAMMES	7 Hrs
	Multibyte Addition – 8 Bit Multiplication and Division – Biggest Number / Smallest Number – Ascending order / Descending order BCD to ASCII Conversion – ASCII to Binary Conversion – Odd Parity Generator – Even Parity Generator -Time delay routines	

		ı		
	I/O AND TIMER: 3.1 I/O	6 Hrs		
	Bit addresses for I/O and RAM – I/O programming – I/O			
III	bitmanipulation programming.			
	3.2 TIMER	9 Hrs		
	Programming 8051 Timers – Timer 0 and Timer 1 registers –			
	Differentmodes of Timer – Mode 0 Programming – Mode 1 Programming - Mode 2Programming - Counter programming –			
	Different modes of Counter – Mode 0 Programming – Mode 1			
	Programming -Mode 2 Programming (simple programs)			
	INTERRUPT AND SERIAL COMMUNICATION			
IV				
	4.1 SERIAL COMMUNICATION	9 Hrs		
	Basics of Serial programming – RS 232 Standards - 8051			
	connection to RS 232 – 8051 Serial Communication Programming			
	- Programming 8051 to transmit data serially - Programming 8051			
	to Receive data serially.			
	4.2 INTERRUPT	7 Hrs		
	8051 Interrupt s – Programming Timer Interrupts – Programming			
	external hardware interrupts – Programming the serial			
	communication interrupt –Interrupt priority in 8051 (simple			
	programs).			
V	INTERFACING TECHNIQUES			
	5.1. IC 8255	6 Hrs		
	IC 8255 – Block Diagram – Modes of 8255.			
	5.2. INTERFACING TECHNIQUES	40		
	Interfacing external memory to 8051–8051 interfacing with the	13 Hrs		
	8255 – ASM Programming – Relays – Sensor interfacing – ADC interfacing – DAC interfacing - Keyboard interfacing – Seven			
	segment LED Display Interfacing - Stepper Motor interfacing – DC			
	motor interfacing using PWM			
	Revision & Test	8		

TEXT BOOKS:

 Microcontrollers, Principles and Applications – Ajit pal – PHI Ltd., -2011.

REFERENCE BOOKS:

- 8051 Microcontroller and Embedded Systems using Assembly and C by Mazidi, Mazidi and D.MacKinlay, 2006 Pearson Education Low Price Edition.
- Microprocessor and Microcontroller by R.Theagarajan, Sci Tech Publication, Chennai.

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

III YEAR

M SCHEME

V SEMESTER

VERY LARGE SCALE INTEGRATION

M-SCHEME

(Implemented from the Academic year 2015 - 2016 onwards)

Course Name: Electronics and Communication Engineering

Subject code: 34053

Semester: V Semester

Subject Title: VERY LARGE SCALE INTEGRATION

TEACHING AND SCHEME OF EXAMINATION:

No of weeks per semester: 15 weeks

	Instruction		Examination				
Subject	Hrs./	Hrs./	Marks				
	Week Semester		Internal	Board Examination	Total	Duration	
			Assessment	Examination			
Very Large Scale Integration	5	75	25	75	100	3 Hrs	

Topics and Allocation of Hours:

Unit	Topic	Time (Hrs.)
I	Combinational Logic Circuits	14
II	VHDL for combinational logic circuit	13
III	Sequential Logic circuits	13
IV	VHDL for sequential Logic circuits	12
٧	PLDS and FPGA circuits	11
	Test & Revision	12
	TOTAL	75

RATIONALE:

Very Large Scale integration technology, when especially used for digital integrated circuitdesign, is that it is mandatory the behaviour of the required system to be described (modelled) and verified(simulated) before synthesis tools translate the design into real hardware fabrication in the foundry(gates and wires). Hardware Description Language (HDL) allows designs to be described using any methodology - top down, up or middle out. VHDL can be used to describe hardware at the gate level or in a more abstract way. This course is to introduce the digital design concepts through hardware description Language. VHDL programming, design flow of VLSI, and architectures of CPLD and FPGA. It is mainly aimed at design of combinational and sequential at gate / behavioural level and simulates and verifies their functionality using the Hardware description Language (VHDL)

OBJECTIVES:

On successful completion of the course the students must be able to

- Understand device level implementation of digital gates.
- Understand the combinational circuit design and optimizing of the gate
- Design a combinational circuit for any custom made application
- Explain the building blocks for the combinational circuit
- > Understand the VHDL code and circuit design process.
- Develop a VHDL code for any combinational circuit
- Answer the VHDL primitives and the importance of VHDL code in a digital circuit
- Design a digital circuit with Muxes and Encoders
- Understand the functionality of various flipflops through its excitation table.
- Design of a sequential circuit for any custom made application
- Explain the style of moore and mealy type machines
- Understand to implement VHDL code for various flipflops
- Design of sequential circuit and implementation with VHDL code
- Explain the importance of PROM, PLA, PAL and PLD
- Differentiate between the PROM, PLA and PAL.
- Develop the circuit using PROM,PAL and PLA.
- Understand the CPLD and FPGA hardware.
- Describe ASICs

VERY LARGE SCALE INTEGRATION

DETAILED SYLLABUS

Unit	Name of the Topic	Hours
	4.4. COMPINATIONAL CIRCUIT DECICNA NIMOC and CMOC Lanie	711
'	1.1 COMBINATIONAL CIRCUIT DESIGN: NMOS and CMOS logic implementation of Switch, NOT, AND, OR, NAND, and NOR Gates CMOS Transmission Gate. Digital logic variable, functions, inversion, gate/circuits, Boolean algebra and circuit synthesis using gates (Up to 4 variables).	7 Hrs
	1.2 COMBINATIONAL CIRCUIT BUILDING BLOCKS:	
	Circuit synthesis using Multiplexer, Demultiplexer, Encoders and Decoders, Arithmetic adder, Sub tractor and Comparator circuits. Hazards and races	
		7Hrs
II	2.1 VHDL FOR COMBINATIONAL CIRCUIT: Introduction to VLSI and its design process. Introduction to CAD tool and VHDL: Design Entry, Synthesis, and Simulation. Introduction to HDL and different level of abstractions. HDL Statements and Assignments	8 Hrs
	2.2 VHDL CODE: AND, OR, NAND, NOR gates, Implementation of Mux, Demux, Encoder, decoder. Four bit Arithmetic adder, sub tractor and comparator in VHDL	5Hrs
III	3.1 SEQUENTIAL CIRCUIT DESIGN : Introduction/Refreshing to Flipflops and its excitation table, counters and Shift registers	13 Hrs
	3.2 DESIGN STEPS: State diagram, State table, state assignment. Example for moore and mealy machines. Design of modulo counter (upto 3 bit) with only D flip-flops through state diagram	
IV	4.1 VHDL FOR SEQUENTIAL CIRCUIT: VHDL constructs for storage elements. VHDL code for D Latch / D, JK and T Flip-flops withorwithout reset input.	5 Hrs
	4.2 VHDL EXAMPLES : Counters :Synchronous counters-2 bit &3 bit up counter. 3 bit up/down counter Decade counter, Johnson Counter	7 Hrs

V	5 PLDS AND FPGA: Introduction to PROM,PLA and PAL. Implementation of combinational circuits with PROM, PAL and PLA (up to 4 variables).Comparison between PROM, PAL and PLA	11 Hrs		
	.Introduction to Complex Programmable Logic device, Field Programmable Gate Array Introduction to ASIC. Types Of ASIC			
	Revision & Test	12 Hrs		

TEXT BOOK:

- 1. "Digital Design" M.Morris Mano Michael D Ciletti Pearson Education 2008
- 2. "Fundamentals of Digital Logic with VHDL design" Stephen brown and Vranesic 2nd edition

McGrawHill,2008

3. "VHDL Primer" Bhasker J Prentice Hall India -2009

REFERENCES:

- 1. "Digital Electronics with PLD Integration" Nigel P. Cook, Prentice Hall, 2000
- 2. "Programmable Logic Handbook: PLD, CPLD, and FPGA" Ashok K.Sharma, Mcgraw-Hill, 1998
- 3. "Digital Logic Simulation and CPLD Programming with VHDL" Steve Waterman Prentice Hall,

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

III YEAR

M SCHEME

V SEMESTER

2015-2016 onwards

DIGITAL COMMUNICATION

M-SCHEME (Implemented from the Academic year 2015-2016 onwards)

Course Name: Electronics and Communication Engineering

Subject Code : 34071 Semester : V Semester

Subject Title : DIGITAL COMMUNICATION

TEACHING AND SCHEME OF EXAMINATION:

Number of Weeks/ Semester : 15 weeks

Instruction		Instruction Examination				
Subject	Hrs./ Hrs./		Marks			
Cabjeet	Week	Semester	Internal	Board	Total	Duration
	Week Ocinester	Assessment	Examination	. Star		
Digital Communication	5	75	25	75	100	3 Hrs

TOPICS AND ALLOCATION:

UNIT	TOPIC	TIME (HRS)
I	Basics of digital communication	13
II	Formatting and Base Band Modulation	13
III	Baseband Coding Techniques	13
IV	Digital Modulation Techniques	12
V	Spread Spectrum Techniques	12
	Revision Test	12
	Total	75

RATIONALE:

Today, the growth of any industry depends upon electronics and communication. There is the need for digital techniques in each and every field. The reason behind the introduction of this subject is to impart technical excel hence in the field of digital communication by analyzing the various digital transmission methods, error control methods and understanding about the multiple access communication.

OBJECTIVES:

- To know the Basics of Digital Communication
- To study about the various types of signals
- > To study about the data transmission
- To understand the Baseband system and sampling
- To learn about PCM waveform types
- > To study about M-ary pulse modulation
- To learn about rationale for coding
- To learn about types of coding methods
- To study about various error control codes
- To know the Digital modulation techniques
- To learn about TDM frame structure
- To study about coherent detection of PSK, FSK
- To understand the Spread spectrum communication
- > To study the Jamming consideration
- To study about CDMA Digital cellular system

34071 DIGITAL COMMUNICATION

DETAILED SYLLABUS

UNIT	NAME OF THE TOPIC	HOURS
	BASICS OF DIGITAL COMMUNICATION	
1	Digital communication signal processing – Typical Block diagram and transformations - Advantages over analog communication – Channels for Digital communication- Telephone, Optical fiber, Satellite. Classification of signals- deterministic and random signals - periodic and non-periodic signals – analog and discrete signals - energy and power signals - unit impulse function. Information capacity (Definition only) – Shannon's limit for information capacity (Definition only) - Data transmission - Serial and parallel transmission - Synchronous and asynchronous transmission.	13
2	FORMATTING AND BASE BAND MODULATION Base band system - The Sampling Theorem -impulse sampling- natural sampling- sample and hold operation - Spectra- Nyquist Theorem - Aliasing - signal interface for a digital system - sampling and quantizing effects-Quantization noise - channel effects - channel noise - PCM - Uniform and Non-uniform Quantization, Baseband transmission PCM waveform types- non return-to-zero(NRZ)- return-to-zero (RZ)- phase encoded - multilevel binary - spectral attributes of PCM waveforms - Bits per PCM word and Bits per symbol- PCM word size - M-ary pulse modulation waveforms.	13
3	BASEBAND CODING TECHNIQUES Rationale for coding – Types of codes – Discrete memoryless channel – Error control coding methods – forward error correction – error detection with retransmission – types of errors – random error and burst error – Principles of linear block codes – Hamming code – Binary cyclic codes – Cyclic redundancy check code (CRC) – Convolution code.	13

	DIGITAL MODULATION TECHNIQUES	
	Digital modulation techniques – Listing of various types – Coherent binary	
	modulation techniques – Coherent quadrature modulation techniques – Non	
	Coherent binary modulation techniques - Minimum shift keying (MSK) -	
_		40
4	Block diagram of MSK transmitter and receiver - TDM-Frame structure,	12
	ASCII framing- E1 Framing, T1 Framing for telephone.	
	Detection of signals – coherent detection of PSK – sampled matched filter –	
	coherent detection of FSK – Non-coherent detection - Binary differential	
	PSK.	
	SPREAD SPECTRUM TECHNIQUES	
	SPREAD SPECTROM TECHNIQUES	
	Spread spectrum communication - Beneficial attributes of spread spectrum	
	systems - Pseudo noise sequences - Randomness properties - Balance	
5	property, Run property and Correlation property - Direct sequence spread	12
3	spectrum systems - Processing gain and performance - Frequency	
	hopping systems – Frequency hopping with diversity – fast hopping versus	
	slow hopping - Synchronization - Jamming consideration - Commercial	
	application – CDMA Digital cellular system.	
	Revision & Test	12

REFERENCE BOOKS:

SL.No	Title	Author	Publisher with Edition
1	Digital communications Fundamentals & Applications	Bernard Sklar & Pabitra Kumar Ray	Pearson -Second edition - 2009
2	Digital Communications	Simon Haykin	John Wiley India edition - 2006
3	Digital communication	Dr. J.S.Chitode	Technical Publications -Pune Second edition,2011
4	Digital and analog communication system	B.P.Lathi .Zhi Ding	International 4th Edition - OXFORD university press.
5	Digital Communication	P.Ramakrishna Rao	TMH 2011

6	Principles of Communications system	Taub &Schilling	TMH Third edition,2008
7	Digital communications	John G.Prokais	2011
8	Digital communications	Dr.K.N.Hari Bhat Dr.D.Ganesh Rao	Sanguine Technical Publisher 2005

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

III YEAR

M SCHEME

V SEMESTER

2015-2016 onwards

PROGRAMMABLE LOGIC CONTROLLERS

M-SCHEME

Course Name: ELCTRONICS AND COMMUNICATION ENGINEERING

Subject code: 34272

Semester : V Semester

Subject title : PROGRAMMABLE LOGIC CONTROLLERS

TEACHING AND SCHEME OF EXAMINATION

No. of weeks / Semester: 15 weeks

	Inst	ruction	Examination			
Subject	Hrs./	Hrs./	Marks			
,	Week		Internal Assessment	Board Examination	Total	Duration
PROGRAMMABLE LOGIC CONTROLLERS	5	75	25	75	100	3 Hrs

Topics and Allocation of Hours:

UNIT	TOPICS	TIME (Hrs)
I	Architecture and operation of PLC	13
II	Programming of PLC	13
III	PLC Timers and counters	13
IV	Advanced instructions	12
V	I/O Module Communication and networking	12
	Revision – Test	12
	Total	75

RATIONALE:

Programmable Logic Controller is the mandatory for the control Engineers in any Process Industry. As it is the default controller being used in the industries in automation of process such as packing, discrete control etc., It is obvious for the instrumentation and control Engineer to understand Hardware and programming the PLC.

OBJECTIVES:

- ➤ To understand the detailed Hardware of PLC and its parts
- To understand the working of PLC and scan cycle
- To understand the program and data memory organization
- To know the Different timers of PLC and programming them
- > To know the different counters of PLC and its parameters
- To understand the Ladder logic programming of PLC
- > To develop simple ladder programs
- > To study the Advanced instructions of PLC
- > To understand the communication module of PLC

34272- PROGRAMMABLE LOGIC CONTROLLERS DETAILED SYLLABUS

UNIT	NAME OF THE TOPIC	HOURS
I	Evolution of PLCs – Hard-wired control systems. PLC – definition, features, Advantages, Relays .PLC parts and architecture – CPU – I/O section – Programming device - Memory - input field devices – output field devices - input module wiring connections, output module wiring connections- Power Supply -PLC versus computer - Types of PLC – single ended – multitask – control management- unitary - modular- small – medium – large.Developing circuits from Boolean expression – Hardwired logic to programmed logic – programming word level logic instruction – processor memory organization program files – data files – program scan.	13 Hrs
II	PROGRAMMING OF PLC PLC Programming languages -Standard languages- Ladder diagram (LD) - Function block diagram (FBD) Sequential function chart(SFC)- Statement List(STL) (each one example program)-Symbols of a PLC Input and output contact graphical languages(IES)— program format — Typical Numbering mode — Equivalent ladder diagram of AND, OR, NOT, XOR, NAND AND NOR gate equivalent ladder diagram to demonstrates De Morgan's theorem, Ladder design switches- Develop elementary program design of a 4:1 Multiplexer using ladder logic programming wired level logic instructions input, output, flag, timer, counter, latch.	13 Hrs
III	PLC TIMERS AND COUNTERS Definition and Classification of a timer. Characteristics of a PLC timer – functions in a timer – resetting –retentive functions and function block format- non-retentive – classification – Timer ON-delay- Timer-OFF delay-Simple problems using timer PLC counter – Operation of a PLC counter – Counter parameters – Format of counter instruction and counter data file - count up (CTU)- count down(CTD) simple	13 Hrs

	problems using counter.		
	ADVANCED INSTRUCTION		
IV	Introduction - comparison instructions- Addressing format for micro logic system - Different addressing types - Data movement instructions - Mathematical instructions- Program flow control instructions - PID instructions.		
	Program development and execution using Allen bradly PLC. Simplified start up process of a coal feeding to a boiler plant - elevator for 3 floor building - Traffic light control -conveyor belt	12 Hrs	
	Selection of PLC - Safety considerations built in the PLC's.		
V	I/O MODULE COMMUNICATION AND NETWORKING		
	Introduction – classification of I/O Module Input – Output system – Direct I/O, parallel I/O – Sourcing and sinking of serial I/O system. PLC interfacing-Discrete Input module –DC - AC – Discrete output module – Analog input module single ended and output module - RTD input modules- Thermocouple- High speed Encoder-Stepper motor- RS-232 interface module-Differential input module. Types of Communication Interface. Parallel – serial – Parallel – IEEE 488 BUS- Serial _ balanced – unbalanced- communication mode- simplex – Half duplex – full duplex features of good interface. Serial interface RS 232c. DB-9 connection of Rs232C Network Topology, Bus Ring, Star, Tree.	12 Hrs	
	Revision and Test	12 Hrs	

REFERENCE BOOKS:

- 1.Madhuchhanda Mitra ,Samarjit sen Gupta,"PLC and Industrial Automation an introduction", Penram international Publishing (India) Pvt Ltd.
- 2.Pradeep Kumar Srivastava, "Exploring Programmable Logic Controller with applications", BPB Publication
- 3.W. Bolton," Programmable logic controller" IV Edition Reed Elsevier India pvt ltd.
- 4.Gary Dunning," Introduction to PLC", IIIrd edition Thomson del mar learning

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

III YEAR

M SCHEME

V SEMESTER

2015-2016 onwards

ELECTRONIC SYSTEM DESIGN

M-SCHEME

Course Name: Electronics and Communication Engineering

Subject Code: 34073

Semester : V Semester

Subject Title: ELECTRONIC SYSTEM DESIGN

TEACHING AND SCHEME OF EXAMINATION:

Number of Weeks/ Semester : 15 weeks

	Inst	ruction	Examination			
Subject	Hrs./	Hrs./	Marks			
	Week	Semester	Internal	Board	Total	Duration
			Assessment	Examination	1000	
Electronic System Design	5	75	25	75	100	3 Hrs

TOPICS AND ALLOCATION:

UNIT	TOPIC	TIME (Hrs)
I	Power supplies	13
II	Amplifier, Voltage to current and current to voltage converter	13
III	ADC, DAC, Instrumentation amplifier and transducer	13
IV	Signal generators	12
V	Microcontroller based application	12
	Revision ,Test	12
	TOTAL	75

RATIONALE:

The rationale behind introducing this subject is to make the students understand the structure, working and all other relevant aspects of electronic systems which has become an integral part of Electronic media which is growing at an exponentially high rate all around the world.

OBJECTIVES:

- ➤ To understand to design of DC regulated power supply of various voltages with different protection circuits.
- ➤ To understand the design of different types of amplifiers for various application.
- > To understand the use of various transducers and make use them.
- To design various systems using the analog data collected from transducers
- > To understand the use of microcontrollers for various application

34073-ELECTRONIC SYSTEM DESIGN

DETAILED SYLLABUS

UNIT	NAME OF THE TOPIC	HOURS
	DESIGN OF POWER SUPPLY	
1	DC power supply with filters - Regulators and their types - Protection circuits - Multi output and variable power supply design - Rectifiers – types - half wave, full wave.	13
	DESIGN OF SMALL SIGNAL AMPLIFIERS	
2	CB,CE configuration - Emitter follower - Darlington pair amplifiers with and without — Bootstrapping - Two stage direct coupled amplifiers - Design of audio power amplifier with drivers - Design of simple PA system - Voltage to current converter, current to voltage convert	13
	DATA ACQUISITION SYSTEM	
3	Analog to digital converter (ADC) - Digital to analog converter (DAC) - Design of Instrumentation amplifier with the bridge type – transducer - Temperature measurement - Design of Electronic voltmeter and ammeter - Design of – multimeter - Display system.	13
	DESIGN OF FUNCTION GENERATORS	
4	Design of AM signal using multiplier IC - AM signal demodulation using envelope detector - Design of FM signal using VCO (using IC NE566) -	12
	FM signal demodulation using phase discriminator and ratio detector.	
	HIGH VOLTAGE/HIGH CURRENT DRIVER	
5	Circuit for Relay and motor control applications - Microcontroller based closed loop system - Security systems, Scrolling display - Microcontroller based stepper motor - Microcontroller based temperature sensor and relay	12
	Revision & Test	12

REFERENCE BOOKS:

SL.No	Title	Author	Publisher with Edition
9.	A Monograph on Electronic s Design Principles,	N.C.Goyel, R.K.Khetan,	Khanna Publishers -Second Edition
10.	Electronic devices and circuits	Allen Mottershead	Prentice hall of india pvt limited, 19 th edition, 1997
11.	A Monograph on Electronic s Design Principles,	N.C.Goyel, R.K.Khetan,	Khanna Publishers -Second Edition
12.	Electronic devices and circuits	Allen Mottershead	Prentice hall of india pvt limited, 19 th edition, 1997
13.	The art of electronics	Paul Horowitz	Cambridge University-2 nd edition Press -2003
14.	Electronic principles and applications	Charles.A.Schuler	Mc graw hill international edition, 3 rd edition, 1989
15.	8051 Micro controllers	Mazidi and D.Mackinlay	Pearson education , low price edition, 2006

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

III YEAR

M SCHEME

V SEMESTER

2015-2016 onwards

ADVANCED COMMUNICATION SYSTEMS PRACTICAL

M-SCHEME

(Implemented from the Academic year 2015 - 2016 onwards)

Course Name: Electronics and Communication Engineering

Subject code : 34055

Semester : V Semester

Subject title : ADVANCED COMMUNICATION SYSTEMS PRACTICAL

TEACHING AND SCHEME OF EXAMINATION:

Number of Weeks/ Semester: 15 weeks

	Inst	ruction	Examination			
Subject	Hrs./ Hrs./		Marks			
	Week	Semester	Internal	Board	Total	Duration
			Assessment	Examination		
Advanced Communication Systems Practical	4	60	25	75	100	3 Hrs

ALLOCATION OF MARKS

CIRCUIT DIAGRAM/BLOCK DIAGRAM	20
CONNECTION:	25
EXECUTION & HANDLING OF EQUIPMENT :	15
OUTPUT / RESULT :	10
VIVA – VOCE :	05
TOTAL:	75

34055 - ADVANCED COMMUNICATION SYSTEMS PRACTICAL

LIST OF EXPERIMENTS:

- 1. Simulate the ASK Modulation and demodulation using the simulation tool like PSPICE/ multisim/orcad/tina
- Simulate the FSK Modulation using the simulation tool like PSPICE/ multisim/orcad/tina
- 3. Simulate PSK Modulation and demodulation. using the simulation tool like PSPICE/ multisim/orcad/tina.
- 4. Simulate the Instrumentation amplifier using the simulation tool like PSPICE/ multisim/orcad/tina
- Construct the circuit of a FSK Modulator & determine the output. waveform
- 6. Construct the circuit of a FSK Demodulator & determine the output waveform.
- 7. Construct the circuit to determine the output of a TDM signal. .
- 8. Construct and test a fiber optic analog link.
- 9. Construct and test a fiber optic digital link.
- 10. Construct a suitable circuit & find the bending loss and propagation loss in fiber optics.
- 11. Construct and test the performance of Manchester encoder and decoder.
- 12. Construct and measure the Numerical aperture of optical fiber.
- 13. Construct and test a voice link (with telephone handset both at transmitter and receiver using optical fiber)
- 14. Install a DTH system. & test it.
- 15. Construct a LED circuit to find the photo diode characteristics.

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

III YEAR

M SCHEME

V SEMESTER

2015-2016 onwards

MICROCONTROLLER PRACTICAL

M-SCHEME

(Implemented from the Academic year 2015 - 2016 onwards)

Course Name: Electronics and Communication Engineering

Subject code: 34056

Semester : V Semester

Subject title: Microcontroller practical

TEACHING AND SCHEME OF EXAMINATION:

Number of Weeks/ Semester: 15 weeks

	Instruction		Examination				
Subject	Hrs./ Hrs./		Marks				
•	Week	Semester	Internal	rnal Board Tota		Duration	
			Assessment	Examination			
Microcontroller practical	4	60	25	75	100	3 Hrs	

ALLOCATION OF MARKS

I. Algorithm or Flow chart : 15 Marks

II. Program : 25 Marks

III. Execution : 20 Marks

IV. Result :10 Marks

V. Viva : 5 marks

Total : 75 Marks

34056 - MICROCONTROLLER PRACTICAL

LIST OF EXPERIMENTS

Part-A

- 1. Write an Assembly Language Program for Multi-byte Addition and execute the same in the 8051 Kit.
- 2. Write an Assembly Language Program for Multiplication and Division of two numbers and execute the same in the 8051 Kit.
- 3. Write an Assembly Language Program for Arranging the given data in Ascending order and execute the same in the 8051 Kit.
- 4. Write an Assembly Language Program for ASCII to Binary and execute the same in the 8051 Kit.
- 5. Write an Assembly Language Program for Parity bit generation and execute the same in the 8051 Kit.
- 6 Write an Assembly Language Program for using timer / Counter and execute the same in the 8051 Kit.

<u>Part - B</u> INTERFACING WITH APPLICATION BOARDS

- 7. Write an Assembly Language Program for interfacing Digital I/O board and test it.
- 8. Write an Assembly Language Program for interfacing Matrix keyboard and test it.
- 9. Write an Assembly Language Program for interfacing seven segment LED displays and test it.
- 10. Write an Assembly Language Program for interfacing Traffic light control and test it.
- 11. Write an Assembly Language Program for interfacing 8 bit ADC and test it.
- 12. Write an Assembly Language Program for interfacing 8 bit DAC and test
- 13. Write an Assembly Language Program for interfacing STEPPER MOTOR and test it.
- 14. Write an Assembly Language Program for interfacing DC motor and test it.
- 15. Write an Assembly Language Program for Sending data through serial port between controller kits and test it.

EQUIPMENTS REQUIRED

<u>S.No</u>	Name of the Equipments	Required Nos
1.	8051 Microcontroller Kit	14 Nos
2.	Digital I/O Interface Board	02 Nos
3.	Matrix keyboard Interface Board	02 Nos
4.	Seven segment LED display Interface Board	02 Nos
5.	Traffic light Interface Board	02 Nos
6.	8 bit ADC Interface Board	02 Nos
7.	8 bit DAC Interface Board	02 Nos
8.	STEPPER MOTOR CONTROL Interface Board	02 Nos
9.	DC motor control Interface Board	02 Nos
10.	RS232 serial port cable	02 Nos

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

III YEAR

M SCHEME

V SEMESTER

2015-2016 onwards

VERY LARGE SCALE INTEGRATION PRACTICAL

M-SCHEME

(Implemented from the Academic year 2015 - 2016 onwards)

Course Name : Electronics and Communication Engineering

Course Code : 34057

Semester : V semester

Subject Title : Very Large Scale Integration Practical

TEACHING AND SCHEME OF EXAMINATION:

No of weeks per semester: 15 weeks

Subject	Instruction		Examination			
	Hrs./ Week	Hrs./ Semester	Marks			
			Internal Assessment	Board Examination	Total	Duration
Very Large Scale Integration Practical	4	60	25	75	100	3 Hrs

RATIONALE:

VHDL is a versatile and powerful hardware description language which is useful for modeling digital systems at various levels of design abstraction. This language is for describing the structural, physical and behavioral characteristics of digital systems. Execution of a VHDL program results in a simulation of the digital system allows us to validate the design prior to fabrication of Digital Integrated circuit. This practical introduces basic on VHDL concepts and constructs. It introduces the VHDL from simulation cycle to synthesis level in combinational and sequential circuits.

GUIDELINES:

All the experiments given in the list of experiments should be completed and given for the end semester practical examination.

In order to develop best skills in handling Instruments/Equipment and taking readings in the

practical classes, every three students should be provided with a separate experimental setup fordoing experiments in the laboratory.

The external examiners are requested to ensure that a single experimental question should not be given to more than three students while admitting a batch of 30 students during Board Examinations.

ALLOCATION OF MARKS

Interface circuit diagram	10 marks		
Algorithm or flow chart	20 marks		
Program	20 Marks		
Execution	10 marks		
Result	10 marks		
Viva Voce	5 marks		
Total	75 Marks		

34057- VERY LARGE SCALE INTEGRATION PRACTICAL

LIST OF EXPERIMENTS

1. SIMULATION OF VHDL CODE FOR COMBINATIONAL CIRCUIT

Optimize a 4 variable combinational function (SOP or POS), describe it in VHDL code and simulate it.

Example: F = (0,5,8,9,12) in sop or pos

2. SIMULATION OF VHDL CODE FOR ARITHMETIC CIRCUITS

Design and Develop the circuit for the following arithmetic function in VHDL Codes and Simulate it. Addition, Subtraction Multiplication (4 x 4 bits)

3. SIMULATION OF VHDL CODE FOR MULTIPLEXER

Design and develop a 2 bit multiplexer and portmap the same for developing upto 8 bit multiplexer.

4. SIMULATION OF VHDL CODE FOR DEMULTIPLEXER

Design and develop an 8 output demultiplexer. Simulate the same code in the software

5. VHDL IMPLEMENTATION OF MULTIPLEXER

Describe the code for a multiplexer and implement it in FPGA kit in which switches are connected for select input and for data inputs a LED is connected to the output.

6. VHDL IMPLEMENTATION OF DEMULTIPLEXER

Switches are connected for select inputs and a data input, Eight LEDs are connected to the output of the circuit.

7. VHDL IMPLEMENTATION OF 7 SEGMENT DECODER

Develop Boolean expression for 4 input variables and 7 output variables. Design and develop a seven segment decoder in VHDL for 7 equations. A seven segment display is connected to the output of the circuit. Four switches are connected to the input. The 4 bit input is decoded to 7 segment equivalent.

8. VHDL IMPLEMENTATION OF 7 SEGMENT DECODER BY LUT

Develop a 7 segment decoder using Look up table. Describe the seven segment decoder in VHDL using developed Look up table. A seven segment display is connected to the output of the circuit. Four switches are connected to the input. The 4 bit input is decoded into 7 segment equivalent.

9. VHDL IMPLEMENTATION OF ENCODER

Design and develop HDL code for decimal (Octal) to BCD encoder. There will be10 input switches (or 8 switches) and 4 LEDs in the FPGA kit. The input given from switches and it is noted that any one of the switch is active. The binary equivalent for the corresponding input switch will be glowing in the LED as output.

10. SIMULATION OF VHDL CODE FOR DELAY

Develop a VHDL code for making a delayed output for 1second or 2 seconds by assuming clock frequency provided in the FPGA Kit.

11. VHDL IMPLEMENTATION FOR BLINKING A LED

Develop a VHDL Code for delay and verify by simulating it. This delay output is connected to LED. Delay is adjusted such away LED blinks for every 1 or 2 seconds.

12. SIMULATE A VHDL TEST BENCH CODE FOR TESTING A GATE

Develop a VHDL test bench code for testing any one of the simple gate. Simulate the test bench code in the HDL software.

13. VHDL IMPLEMENTATION FOR BLINKING A ARRAY OF LEDS

Design and develop a VHDL Code for 4 bit binary up counter. Four LEDs are connected at the output of the counter. The counter should up for every one seconds.

14. VHDL IMPLEMENTATION OF A SPELLER WITH AN ARRAY OF LEDS

Design and develop VHDL Code for a 5 bit Johnson ring counter 4 bit The LEDs are connected at the output of the counter. The speller should work for every one seconds.

15. VHDL IMPLEMENTATION OF 7 SEGMENT DISPLAY

Design and develop a seven segment decoder in VHDL. Design and develop a 4 bit BCD counter, the output of the counter is given to seven segment decoder. A seven segment display is connected to the output of the decoder. The display shows 0,1, 2.. 9 for every one second

LIST OF EQUIPMENTS:

1. FPGA KIT with atleast 10 switches for input, 8 LEDs for output, a 7 segment display, debounced push switch (2 Nos) for manual clock input and external clock source – 10Nos.

NOTE:

- 1. Gate level or behavioral level or structural model can be used for all experiments.
- 2. Manual for the FPGA Kit and interface kit can be given to students for the final exam.

VI SEMESTER

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

M - SCHEME 2015 - 2016

COMPUTER HARDWARE SERVICING AND NETWORKING

DIRECTORATE OF TECHNICAL EDUCATION GOVERNMENT OF TAMILNADU

M - SCHEME

(Implements from the Academic Year 2015-2016 onwards)

Course Name : Electronics and Communication Engineering

Subject code Semester

: 34061 : VI Semester

Subject Title : COMPUTER HARDWARE SERVICING AND NETWORKING

TEACHING AND SCHEME OF EXAMINATION:

No. of Weeks per Semester: 15 Weeks

	Instructions		Examination			
Subject		Hours /	Marks			
Cabject		Semester	Internal	Board Examination	Total	Duration
COMPUTER HARDWARE SERVICING AND NETWORKING	6	90	25	75	100	3 Hours

Topics and Allocation of Hours:

Unit No	Topics	No. of Hours				
I	MOTHERBOARD COMPONENTS AND MEMORY STORAGE DEVICES	16				
II	I/O DEVICES AND INTERFACE	16				
III	TROUBLE SHOOTING OF DESKTOP AND LAPTOPS	16				
IV	COMPUTER NETWORK DEVICES AND OSI LAYERS	16				
V	V 802.X AND TCP/IP PROTOCOLS					
	Revision and Examinations					
	Total					

Rationale:

Maintaining and servicing the computers, laptops and peripherals are essential requirements of the computer students. The clear understanding of computer network devices and protocols are also taught in this subject.

OBJECTIVES:

On completion of the following units of syllabus contents, the students can

- Identify the major components of CPU.
- ➤ Understand the principle of operations of all the interfacing boards, IO/Memory slots and interfacing devices.
- ➤ Know the use of diagnostic Software.
- > Trouble shoot the problems in Laptop.
- ➤ Understand the different layers of OSI and their functions. Compare different LAN protocols.
- ➤ Identify the protocols used in TCP /IP and compare with OSI model.

 Use of IP addressing and TCP/ IP protocols briefly.

34061 COMPUTER HARDWARE SERVICING AND NETWORKING

DETAILED SYLLABUS

-	DETAILED SYLLABUS	
Unit	Name of the Topic	Hours
No.		
	MOTHERBOARD COMPONENTS AND MEMORY STORAGE DEVICES Introduction: Hardware, Software and Firmware. Mother board, IO and memory expansion slots, SMPS, Drives, front panel and rear panel connectors. Processors: Architecture and block diagram of multicore Processor, Features of new processor(Definition only)-chipsets (Concepts only) Bus Standards: Overview and features of PCI, AGP, PCMCIA Primary Memory: Introduction-Main Memory, Cache memory – DDR2, DDR3 and Direct RDRAM. Secondary Storage: Hard Disk – Construction – Working Principle Specification of IDE, Ultra ATA, Serial ATA; HDD Partition - Formatting. Removable Storage: CD-R,CD-RW,DVD –ROM and DVD –RW: construction and reading & writing operations;	
II	I/O DEVICES AND INTERFACE Keyboard: Signals – operation of membrane and mechanical keyboards–troubleshooting; wireless Keyboard. Mouse: types, connectors, operation of Optical mouse and Troubleshooting. Printers: Introduction – Types of printers- Dot Matrix, Inkjet, Laser, MFP (Multi Function Printer) and Thermal printer – Operation, Construction and Features-Troubleshooting I/O Ports: Serial, Parallel, USB, Game Port and HDMI. Displays: Principles of LED, LCD and TFT Displays. Graphic Cards: VGA and SVGA card. Modem: Working principle. Power Supply: Servo Stabilizers, online and offline UPS - working principles; SMPS: Principles of Operation and block diagram of ATX Power supply, Connector Specifications.	16
III	MAINTENANCE AND TROUBLE SHOOTING OF DESKTOP AND LAPTOPS Bios-setup: Standard CMOS setup, Advanced BIOS setup, Power	

	management, advanced chipset features, PC Bios communication – upgrading BIOS, Flash BIOS -setup. POST: Definition – IPL hardware – POST Test sequence – beep codes Diagnostic Software and Viruses: Computer Viruses – Precautions –Anti-virus Software – identifying the signature of viruses – Firewalls and latest diagnostic softwares. Laptop: Types of laptop –block diagram – working principles – configuring laptops and power settings -SMD components, ESD and precautions. Laptop components: Adapter – types, Battery – types, Laptop Mother Board - block diagram, Laptop Keyboard and Touchpad. Installation and Troubleshooting: Formatting, Partitioning and Installation of OS – Trouble Shooting Laptop Hardware problems - Preventive maintenance techniques for laptops.	16
IV	COMPUTER NETWORK DEVICES AND OSI LAYERS Data Communication: Components of a data communication. Data flow: simplex – half duplex – full duplex; Topologies: Star,Bus, Ring, Mesh, Hybrid – Advantages and Disadvantages of each topology. Networks: Definition -Types of Networks: LAN – MAN – WAN – CAN – HAN – Internet –Intranet –Extranet, Client-Server, Peer To Peer Networks. Network devices: Features and concepts of Switches – Routers(Wired and Wireless) – Gateways. Network Models: Protocol definition - standards - OSI Model – layered architecture – functions of all layers.	16
V	802.X AND TCP/IP PROTOCOLS Overview of TCP / IP:TCP/IP – Transport Layers Protocol – connection oriented and connectionless Services – Sockets - TCP & UDP. 802.X Protocols: Concepts and PDU format of CSMA/CD (802.3) – Token bus (802.4) – Token ring (802.5) – Ethernet – type of Ethernet (Fast Ethernet, gigabit Ethernet) – Comparison between 802.3, 802.4 and 802.5 Network Layers Protocol: IP –Interior Gateway Protocols (IGMP, ICMP, ARP, RARP Concept only). IP Addressing: Dotted Decimal Notation –Subnetting & Supernetting. Application Layer Protocols: FTP– Telnet – SMTP– HTTP – DNS -pop	16

TEXT BOOKS:

- IBM PC and CLONES, B.Govindrajalu, Tata McGrawhill Publishers, IBM PC and CLONES
- 2. Computer Installation and Servicing, D.Balasubramanian, Tata McGraw Hill
- 3. Computer Installation and Servicing
- 4. The complete PC upgrade and Maintenance, Mark Minasi, BPB Publication, The complete PC upgrade and Maintenance
- 5. Troubleshooting, Maintaining and Repairing PCs, Stephen J Bigelow ,Tata MCGraw Hill Publication ,Troubleshooting Maintaining and Repairing PCs
- 6. Upgrading and repairing laptops, Scott Mueller, QUE Publication, Upgrading and repairing laptops
- 7. Data Communication and networking, Behrouz A.Forouzan, Tata Mc-Graw Hill, New Delhi,
- 8. Data and Computer Communications, William Stallings, Prentice-Hall of India, Eighth Edition
- 9. Computer Networks, Andrew S.Tanenbaum, Prentice-Hall of India, New Delhi.

REFERENCE BOOKS:

- 1. Computer Networks, Achyut Godbole, Tata Mc-Graw Hill -New Delhi
- 2. Principles of Wireless Networks- A unified Approach, Kaveh

Pahlavan and Prashant Krishnamurty, Pearson Education, 2002

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

III YEAR

M SCHEME

VI SEMESTER

2015-2016 onwards

TEST ENGINEERING

CURRICULAM DEVELOPMENT CENTRE

M-SCHEME

(Implemented from the Academic year 2015-2016 onwards)

Course Name: Electronics and Communication Engineering

Subject code: 34062

Semester : VI Semester

Subject title: TEST ENGINEERING

TEACHING AND SCHEME OF EXAMINATION:

Number of Weeks/ Semester: 15 weeks

Subject	Inst	ruction		Examina	tion	
	Hrs/	Hrs/	Marks			D
Test Engineering	week	semester	INTERNAL ASSESMENT	BOARD EXAM	TOTAL	Duration
	6	90	25	75	100	3Hrs

TOPICS AND ALLOCATION:

Unit	TOPIC	Hrs
I	INTRODUCTION TO TEST ENGINEERING	17
II	AUTOMATED TESTING METHODS AND TECHNOLOGY	17
III	V-I(SIGNATURE) TESTING METHODS AND TECHNOLOGY	15
IV	BOUNDARY SCAN TESTING METHODS AND TECHNOLOGY	15
V	ATE TEST PROGRAM GENERATION AND SEMICONDUCTOR TESTING	16
	Revision & Test	10
	TOTAL	90

34062 - TEST ENGINEERING

DETAILED SYLLABUS

UNIT	NAME OF THE TOPIC	HOURS
1	INTRODUCTION TO TEST ENGINEERING. Need and Importance of Test Engineering – Principles of Fundamental Testing Methods – Basic Principles of Memory Testing – PCB Track Short Testing Methods –Concepts of Trouble Shooting PCBs - Manual and Automated PCB Trouble Shooting Techniques.	17
2	AUTOMATED TESTING METHODS AND TECHNOLOGY Introduction to Automated Test Techniques – Fundamental of Digital Logic Families - Concepts of Back-Driving / Node Forcing Technique and its International Defense Standard - Concepts of Digital Guarding - Auto Compensation - Clock Termination – Functional Test Methods - Functional Testing of Digital, Analog and Mixed Integrated Circuit – Different types of Memory Module Functional Test.	17
3	V-I(Signature) TESTING METHODS AND TECHNOLOGY Fundamentals of Electrical Characteristics - Effects of Curve Trace, Characteristics of Passive and Active Components - Understanding Composite VI-Curve and it deviations — Component Identification of Ageing Effects with VI Curve Trace, Input and Output Characteristics of Digital Integrated Circuits - Good Versus Suspect interpretation Comparison.	15
4	BOUNDARY SCAN TESTING METHODS AND TECHNOLOGY Introduction to Boundary Scan – Need of Boundary Scan Test Technique - Principle of Boundary Scan Test - Boundary Scan Architecture - Application of Boundary Scan Test- Boundary Scan Standards - Boundary Scan Description Language (BSDL) – Interconnect test – Serial Vector Format (SVF) Test - Basic of JTAG Port - Digital Integrated Circuit Test using Boundary Scan Techniques.	15
5	ATE Test Program generation And Semiconductor testing ATE in PCB Test – Test Fixtures - Basics of Automatic Test Program Generation - Standard Test Data Format STDF – Basic of Digital Simulator - Introduction to Semiconductor Test, Use of Load Boards.	16

REFERENCE BOOKS:

- 1. Test Engineering for Electronic Hardware S R Sabapathi, Qmax Test Equipments P Ltd., 2011.
- 2. Practical Electronic Fault Finding and Trouble shooting by Robin Pain Newnes, Reed Educational and professional publishing Ltd., 1996
- 3. The Fundamentals of Digital Semiconductor Testing, Floyd, Pearson Education India, Sep-2005

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

III YEAR

M SCHEME

VI SEMESTER

2015-2016 onwards

Elective Theory – II
TELEVISION ENGINEERING

CURRICULAM DEVELOPMENT CENTRE

M-SCHEME

(Implemented from the Academic year 2015-2016 onwards)

Course Name: Electronics and Communication Engineering

Subject code: 34081

Semester : VI Semester

Subject title : TELEVISION ENGINEERING

TEACHING AND SCHEME OF EXAMINATION:

Number of Weeks/ Semester: 15 weeks

Subject	Inst	ruction		Examina	tion	
	Hrs/	Hrs/	Marks			D
Television Engineering	week	semester	INTERNAL ASSESMENT	BOARD EXAM	TOTAL	Duration
	5	75	25	75	100	3Hrs

TOPICS AND ALLOCATION:

Unit	Topic	Time (Hrs.)
I	Television Fundamentals	14
II	Camera and picture tubes	13
III	Television transmitter	10
IV	Television Receiver	13
V	Advanced Television Systems	15
	Revision – Test – Model (3+4+3)	10
	TOTAL	75

RATIONALE

One of the elements of mass media communication is the television. The TV has gone with different stages of development. So the electronics engineer must be able to service the TV receiver and its attachments after knowing the working of the TV right from the TV right from the Txr from where the signal is being produced for transmission

OBJECTIVES:

- Unit 1 To understand monochrome TV transmitter and receiver
- Unit 1 To understand principles of scanning
- Unit 1 To study about different TV standards
- Unit 1 To study fundamentals of color TV
- Unit 2 To learn about camera tube and its working.
- Unit 2 To understand the working of picture tubes monochrome
- ➤ Unit 3 To learn about color TV transmitter
- Unit 3 To know about monochrome TV Rxr.
- Unit 4 To Study about color TV receiver
- Unit 4 To know the video amplifier and HDFC
- Unit 5 To study fundamentals of CCTV
- Unit 5 To learn HD TV and 3D TV.
- Unit 5 To study the telecine equipment
- Unit 5 To study applications of Blu ray Disk, DVD players models, USB

34081 - TELEVISION ENGINEERING

DETAILED SYLLABUS

UNIT	NAME OF THE TOPIC	HOURS
1	Television Fundamentals Monochrome TV: Basic block diagram of Monochrome TV transmitter and Receiver – Scanning process – horizontal, vertical and sequential scanning – flicker – interlaced scanning (qualitative treatment only) – need for synchronization – blanking pulses – Aspect ratio– Resolution – Types – vertical and horizontal resolution – video bandwidth – composite video signal (CVS)– CVS for one horizontal line – Definitions for Vertical sync pulse, Serrated vertical pulse, Equalizing pulse – Positive & Negative modulation - TV Standards – List of Types of TV standards.	10
	Color T.V. Fundamentals: Additive mixing of colors –Types – color perception – Chromaticity diagram – Definition for Luminance, Hue Saturation and Chrominance Formation of chrominance signal in PAL system with weighting factors.	4
	CAMERA AND PICTURE TUBES	
2	CAMERA TUBE: Characteristics – Types of camera tube – working principle of Vidicon and Plumbicon camera tube, CCD camera – Video processing of camera pick up signal – Block diagram and Principle of working of color TV camera tube.	7
	PICTURE TUBE: Construction and working of Monochrome picture tube – screen phosphor – screen burn – Screen Persistance - Aluminized screen – Types of color picture tubes -construction and working principle of Delta gun and Trinitron Color picture tubes – Automatic degaussing. TELEVISION TRANSMITTER	6
	Types –Comparison - Principle – Block diagram of Low level IF Modulated TV transmitter –Visual Exciter –Aural Exciter – principle of working of CIN Diplexer –Block diagram of color TV transmitter – color compatibility – PAL color coder –functional blocks and working of each block – Merits and demerits of PAL system.	
3		10

TELEVISION RECEIVER Block diagram of Monochrome Receiver – functions of each block – 4 Need for AGC – Advantages of AGC – Video amplifier requirements frequency & Low frequency compensation – Block diagram of PAL conceiver – Need for sync separator – Basic sync separator circuits—Vertical sync separation & Horizontal sync separation – AFC – Need AFC – Horizontal AFC – Hunting in AFC – Anti Hunt network.	olor 13
ADVANCED TELEVISION SYSTEMS Block diagram of a digital color TV receiver – Remote contransmitter and receiver – Closed Circuit TV system–Applications of – scrambler – necessity - basic principle- types Descrambler diagram - Telecine equipment – Digital CCD Telecine system -Introd to High definition TV (HDTV) and 3DTV. Blue Ray Disc(BD)- The DVD player – Block diagram- Desirable Feature & outputs of DVD players-DVD player Models - USB flash drividrive).	CCTV block uction atures
Revision-Test	10

TEXT BOOKS:

- 1. Modern Television Practice Transmission, Reception, Applications R.R.Gulati New age international $5^{\rm th}$ Edition 2015
- 2. TV and Video Engg. By A.M.Dhake Second Edition TMH -2003

REFERENCE BOOKS:

- 1. Monochrome & Color TV by R.R.Gulati New Age publishers -2003.
- 2. Color TV, Theory and practice by S.P.Bali-TMH 1994.
- 3. Modern VCD-Video CD Player Introduction, servicing and troubleshooting By Manohar Lotia &Pradeep Nair BPB Publications 2002.

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

III YEAR

M SCHEME

VI SEMESTER

2015-2016 onwards

BIO MEDICAL INSTRUMENTATION

CURRICULAM DEVELOPMENT CENTRE

M-SCHEME

(Implemented from the Academic year 2015 - 2016 onwards)

Course Name: Electronics and Communication Engineering

Subject code: 34082

Semester : VI Semester

Subject title : BIO MEDICAL INSTRUMENTATION

TEACHING AND SCHEME OF EXAMINATION:

Number of Weeks/ Semester: 15 weeks

Subject	Instruction		Examination			
	Hrs./	Hrs./	Marks			
		Semest	Internal	Board	Tota	Duratio n
	k	er	Assessme nt	Examinatio n	I	
Bio Medical Instrumentati on	5	75	25	75	100	3 Hrs

TOPICS AND ALLOCATION

Unit	Topic	Time (Hrs)
ı	Bio - electric signals, electrodes and clinical measurement	13
II	Bio - medical recorders	13
III	Therapeutic instruments	13
IV	Biotelemetry and patient safety	14
V	Modern imaging techniques	12
Vi	Revision, Test	10
	TOTAL	75

RATIONALE

Bio medical engineering education is in the growing stage. But every year, there is a tremendous increase in the use of modern medical equipment in the hospital and health care industry therefore it is necessary for every student to understand the functioning of various medical equipments. This subject to enable the students to learn the basic principles of different biomedical instruments vizClinical measurement, Bio - medical recorders, Therapeutic instruments, Biotelemetry and Modern imaging techniques instruments.

OBJECTIVES

After learning this subject the student will be able to understand the about

- The generation of Bio-potential and its measurement using various electrodes.
- The measurement of blood pressure.
- The measurement of lung volume.
- The measurement of respiration rate.
- The measurement of body temperature and skin temperature.
- The principles of operations of ECG recorder.
- The principles of operations of EEG recorder.
- The principles of operations of ENG recorder.
- The working principles of audio meter.
- The principles of operations of pacemaker.
- The basic principle of dialysis.
- The basic principle of short wave diathermy.
- The basic principle of ventilators.
- The working principles of telemetry.
- The basic principle of telemedicine.
- To learn about patient safety.
- The various methods of accident prevention.
- The basic principle of various types of lasers.

- The basic principle of CT and MRI scanner.
- The principle of operation of various imaging techniques

34082 - BIO MEDICAL INSTRUMENTATION

DETAILED SYLLABUS

Units	Name of the topic	Hours
	BIO-ELECTRIC SIGNALS AND ELECTRODES Elementary ideas of cell structure, Bio – potential and their generation – resting and action potential – propagation of action potential. Electrodes – Micro – Skin surface – needle electrodes. CLINICAL MEASUREMENT: Measurement of Blood pressure (direct, indirect) – blood flow meter (Electro magnetic& ultrasonic blood flow meter) – blood pH measurement - Measurement of Respiration rate – measurement of lung volume – heart rate measurement – Measurement of body and skin temperature - Chromatography, Photometry, Flurometry.	13
II	BIO - MEDICAL RECORDERS: Electro cardiograph (ECG) – Lead system – ECG electrodes – ECG amplifiers – ECG recording units – analysis of ECG curves. Nervous system – EEG recorder – 10-20 lead system – recording techniques – EEG wave types – Clinical use of EEG – brain tumour Electro – myograph (EMG) – EMG waves – measurement of conduction velocity – EMG recording techniques – Electro – retinograph (ERG) Audiometer – principle – types – Basics audiometer working.	13
III	THERAPEUTIC INSTRUMENTS: Cardiac pacemaker – classification – External pace makers – implantable pacemaker – pacing techniques – programmable pacemaker – Cardiac defibrillators – types – AC and DC defibrillators – Heart lung machine with Block diagram. Dialysis – Hemo dialysis – peritoneal dialysis. Endoscopes Endoscopic laser coagulator and applications – physiotherapy equipment – short wave diathermy – micro wave diathermy – ultrasonic therapy unit (block / circuit) – Ventilators – types – modern ventilator block diagram.	13
IV	BIOTELEMETRY AND PATIENT SAFETY:	

	Introduction to biotelemetry – physiological – adaptable to biotelemetry – components of a biotelemetry system – application of telemetry – elements of biotelemetry; AM, FM transmitter and receiver – requirements for biotelemetry system – radio telemetry with sub carrier – single channel and multi channel telemetry – Telemedicine; introduction, working, applications. Patient safety: Physiological effects of electric current – Micro and macro shock – leakage current – shock hazards from electrical equipment. Methods of Accident Prevention – Grounding – Double Insulation – Protection by low voltage – Ground fault circuit interrupter – Isolation of patient connected parts – Isolated power distribution system. Safety aspects in electro surgical units – burns, high frequency current hazards, Explosion hazards.	14
V	MODERN IMAGING TECHNIQUES: LASER beam properties – block diagram – operation of CO2 and NDYag LASER – applications of LASER in medicine. X ray apparatus – block diagram – operation – special techniques in X-ray imaging – Tomogram – computerized Axial tomography – Ultrasonic imaging techniques – Echo cardiography – Angiography – CT scanner - Magnetic resonance imaging techniques.	12
	Revision and Test	10

Text Book:

Dr.M. Arumugam – Biomedical Instrumentation ,Anuradha publications, chennai (Page no. 1-15, 21-33, 117-136,142-159,164-179, 182-195, 202-209, 212-215, 255 – 256, 274-277, 285-286, 266-268, 293-297, 299-310, 319-320, 329 – 340, 347-358, 360-367, 374-390, 390-400)

Reference Books.

- Leslie Cromwell –Fred j. Wibell, Erich A.P Feither Bio medical Instrumentation and measurements, II Edition.
- (Page no. 49-64, 63-76, 93-97, 106-149,195-205, 260-276, 296-303, 316 339, 363-383,430-439)
- Jacobson and Webstar Medicine and clinical Engineering.
- R.S .Khandpur Hand book of Bio Medical Instrumentation.
- Medical Electronics Kumara doss
- Introduction to Medical Electronics. B.R. Klin
- Introduction to Biomedical Instrumentation Mandeep Singh Printice Hall India 2010.

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

III YEAR

M SCHEME

VI SEMESTER

2015-2016 onwards

MOBILE COMMUNICATION

CURRICULAM DEVELOPMENT CENTRE

M-SCHEME

(Implemented from the Academic year 2015-2016 onwards)

Course Name : Electronics and Communication Engineering

Subject Code : 34083

Semester : VI Semester

Subject Title : MOBILE COMMUNICATION

TEACHING AND SCHEME OF EXAMINATION:

Number of Weeks/ Semester : 15 weeks

	Instru	ıction	Examination			
Subject			Marks			
	Hrs/ Hrs/ In		Internal	Board	Total	Duratio
	Week	Semester	Assessment	Examination		n
Mobile Communicatio n	5	75	25	75	100	3 Hrs

TOPICS AND ALLOCATION:

UNIT	TOPIC	TIME(HRS)		
I	Introduction to Mobile Communication	13		
II	Broadcast Systems	13		
III	Wireless Transmission (2G)	13		
IV	Wireless Networking (3G)	12		
V	Mobile Network Layer & Transport Layer	12		
	Revision – Test	12		
	TOTAL	75		

RATIONALE

Communication is one of the integral parts of science that has always been a focus point for exchanging information among parties at locations physically apart. After its discovery, telephones have replaced the telegrams and letters. Similarly, the term 'mobile' has completely revolutionized the communication by opening up innovative applications that are limited to one's imagination. Today, mobile communication has become the backbone of the society. All the mobile system technologies have improved the way of living. It's main plus point is that it has privileged a common mass of society. In this subject, the evolution as well as the fundamental techniques of the mobile communication is discussed.

OBJECTIVES:

- > To know the basics of Mobile Radio Communication
- > To know about wireless communications systems
- > To understand the Cellular concept
- > To study broadcasting
- > To learn the Digital audio and video broadcasting
- > To learn the convergence of mobile communications
- > To know wireless communications and the process of transmission
- To study about various architectures in wireless transmission
- > To study the CDMA digital standards
- To understand Mobile Services (2G), (2.5G) and (3G)
- > To know the GPRS and WAP
- > To learn the manufacture and operator technologies
- > To learn mobile network layer & transport layer
- > To study the Dynamic host configuration protocol
- > To know the TCP &its improvements

34083 - MOBILE COMMUNICATION

DETAILED SYLLABUS

UNIT	NAME OF THE TOPIC	HOURS
1	INTRODUCTION TO MOBILE COMMUNICATION Evolution of Mobile Radio Communication, Mobile Radio Telephony in India and around the world, Examples of Wireless Communication Systems: Paging system, Cordless telephones systems, Cellular telephone Systems, Trends in Cellular Radio and personal Communications THE CELLULAR CONCEPT: Frequency reuse, Channel Assignment strategies, Hand off Strategies, Prioritizing Handoffs, Interference and system capacity, Improving coverage and capacity in cellular systems, Cell splitting, Sectoring, Repeaters for range extension	13
2	BROADCAST SYSTEMS Introduction – Cyclical repetition of data – Digital audio broadcasting – multimedia object transfer protocol – Digital video broadcasting – DVB data broadcasting, DVB for high speed internet access – Convergence of broadcasting and mobile communications	13
3	WIRELESS TRANSMISSION (2G) Global system for mobile (GSM) - services and features - Radio subsystem - channel types - Example of a GSM call - Frame structure for GSM – DECT system architecture, protocol architecture – TETRA – UMTS and IMT-2000 - radio interface, UTRAN, core network, handover - CDMA digital cellular standard (IS – 95): Frequency and channel specifications -Forward CDMA channel and Reverse CDMA channel	13
4	WIRELESS NETWORKING (3G) Mobile Services (2.5G) GPRS: GPRS Functional groups – architecture - network nodes – procedures -billing. WAP: WAP Model - WAP Gateway- WAP Protocols - WAP UA prof and caching, wireless bearers for WAP, WAP developer tool kits - Mobile station application execution environment. Mobile Services (3G): Paradigm Shifts in 3G Systems - W-CDMA and CDMA 2000 - Improvements on core network - Quality of service in 3G - Wireless OS for 3G handset - 3G systems and field trials - Other trail systems - Impact on manufacture and operator technologies.	12
5	MOBILE NETWORK LAYER & TRANSPORT LAYER Mobile IP – Goals, assumptions and requirements, Entities and terminology, IP Packet delivery, Agent discovery, Registration, tunneling and encapsulation, Optimization, Reverse tunneling, IPv6, IP micro- mobility support - Dynamic host configuration protocol – mobile ad-hoc network – routing – destination sequence distance vector – Dynamic source routing – alternative metrics TCP – Congestion control – slow start – fast retransmit/ fast recovery – implications of mobility – Classical TCP improvements – indirect – snooping – Mobile–Transmission timeout freezing – selective retransmission- Transaction oriented – TCP over 2.5/3G wireless networks	12
	Revision & Test	12

REFERENCE BOOKS:

SL.No	Title	Author	Publisher with Edition
11.	Wireless Communications Principles and Practice	Theodore S. Rappaport	Pearson Education, 2003
12.	Mobile Communications	Jochen Schiller	Pearson Education, 2009, Second edition
13.	Wireless and Mobile Network Architectures	Yi-BingLin, Imrich Chlamtac	Wiley, 2001
14.	Mobile Cellular Communication	Gottapu Sasibhushana Rao	Pearson Education, 2012
15.	Wireless Digital Communications	Kamilo Feher	PHI, 2003
16.	Mobile Cellular Communications	W.C.Y. Lee	2nd Edition, MC Graw Hill, 1995
17.	Wireless Networks	P. Nicopolitidis	Wiley, 2003
18.	Wireless Communications and Networks	William Stallings	2nd Edition,Prentice Hall of India-2006

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

III YEAR

M SCHEME

VI SEMESTER

2015-2016 onwards

EMBEDDED SYSTEMS PRACTICAL

CURRICULAM DEVELOPMENT CENTRE

CURRICULAM DEVELOPMENT CENTRE

M-SCHEME

(Implemented from the Academic year 2015-2016 onwards)

Course Name: Electronics and Communication Engineering

Subject code :34064

Semester : VI Semester

Subject title :EMBEDDED SYSTEMS PRACTICAL

TEACHING AND SCHEME OF EXAMINATION:

Number of Weeks / Semester: 15 weeks

Subject	Instruction		Examination			
, Hrs/		Marks				
Embedded systems Practical	Hrs/ week	semes ter	INTERNAL ASSESMEN T	BOAR D EXAM	TOTA L	Duratio n
	4	60	25	75	100	3Hrs

ALLOCATION OF MARKS

I. Algorithm or Flow chart : 15 Marks

II. Program : 25 Marks

III. Execution : 20 Marks

IV. Result :10 Marks

VI. Viva : 5 marks

Total : 75 Marks

LISTOF EXPERIMENTS

- 1. **STUDY OF ARM PROCESSOR KIT** (whatever the ARM processor kit the institution is having) Example: LPC2148 The student should able to Understand the memory mapping of the IO and peripherals List the peripherals present in the processor Explain that how to use an IO pin, related SFRs and instructions Explain that how to use timer, UART, its related SFR and instructions sets
- 2. **SIMULATION OF ARITHMETIC OPERATION ON ARM IN ASSEMBLY** Develop an assembly level code for the single precision (32 bit) arithmetic function. a. Addition, b. Subtraction and b. Multiplication (Note: simulate the program in the software)
- 3. **SIMULATION OF ASSEMBLY LEVEL PROGRAM FOR SOFT DELAY** Develop an assembly level code for the 32 bit or 64 bit delay routine. Calculate the no of clock taken for the routine and adjust the delay value for the desired. (Note: simulate the program in the software)
- 4. **SIMPLE LED BLINKING WITH VARIABLE SPEED IN ASM** Develop an assembly level program of ARM processor to blink a LED (including delay routine) in variable speed in the trainer kit. Upon change in the delay program the speed should vary. No need to change the speed dynamically. (Note: Student should study the list of special function registers associated for accessing the IO pin. Manual containing List of IO registers (SFR for IO) can be given to the students for the final exam)
- 5. **REALIZATION OF INPUT AND OUTPUT PORT IN ASM** Develop an assembly level program of ARM processor to read a port in which switches are connected in the trainer kit. Send back the receive input to output in which LEDs are connected in the trainer kit Note: Student should study the list of special function registers associated for accessing Port the read and write. Manual containing List of IO registers (SFR for IO) can be given to the students for the board exam)
- 6. **SIMPLE LED BLINKING WITH VARIABLE SPEED IN C** Develop a C program for ARM processor to blink a LED (including delay routine) in variable speed. Upon change in the input switch the speed should vary. (Note: The C code should be in while loop)
- 7. **SEVEN SEGMENT LED DISPLAY INTERFACE IN C** Develop a C program for ARM processor to interface a seven segment LED display. The display should count up for every one second.
- 8. **SEVEN SEGMENT LED DISPLAY INTERFACE IN C** Develop a C program for ARM processor to interface a seven segment LED display. The display should count up for every one second. The delay can be used from experiment

- 9. **REALIZING TIMER PERIPHERAL IN ARM BY POLLING METHOD** Develop a C program for ARM processor to run a timer peripheral in ARM. The timer flag can be pooled for timer end. As timer ends reset the timer and update new value to the LED display.
- 10. **REALIZING TIMER PERIPHERAL IN ARM BY INTERRUPT DRIVEN METHOD** Develop a C program for ARM processor to run a timer peripheral in ARM. The timer flag can be pooled for timer end. As timer ends reset the timer and update new value to the LED display.
- 11. **SERIAL TRANSMISSION AND RECEPTION OF A CHARACTER IN C BY POLLING METHOD** Write a C Programs for receiving a character from other device (Computer) and send the next character of the received one to the device back. Note: Student should understand the SFRs used for serial communication. Manual containing list of SFRs for the UART can be given to the students for their final examination
- 12. **SERIAL TRANSMISSION AND RECEPTION OF A CHARACTER IN C BY INTERRUPT METHOD** Write a C Programs for receiving a character from other device (Computer) and send the next character of the received one to the device back.
- 13. **DISPLAYING ALPHANUMERIC CHARACTERS IN 2X16 LINE LCD MODULE** Write a C Programs for displaying a number and an alphabet in the LCD module by just calling the built in LCD function. The display should come in the desired line and column. (Built in function for the LCD can be given in the manual)
- 14. **CONVERTING HEXADECIMAL TO DECIMAL AND TO DISPLAY IN LCD** Write a C Programs for converting the given 8 bit hexadecimal into decimal and there by converting into ASCII which is to be displayed in the LCD module. (Built in function for the LCD can be given in the manual)
- 15. ACCESSING INTERNAL ADC OF THE ARM PROCESSOR AND TO DISPLAY IN LCD Write a C Program for reading an ADC, convert into decimal and to display it The ADC input is connected to any analog sensor. (Note: Student should study the SFR associated with ADC, Manual containing List of SFR for accessing ADC can be given for the examination.)

LIST OF EQUIPMENTS AND REQUIREMENTS:

- 1. ARM7 TDMI Kit 10 nos with interface boards for the above experiments The Chip set may be TMS470, LPC2138, LPC2148, or STR7 etc
- 2. Interfaces: RTC, ADC, LCD, Seven segment display, LEDS and Switches.
- 3. Manual for the kit and for interfacing board with stepper motor
- 4. Manual for the built in function for the Board.

NOTE:

- 1. Manual for the ARM instructions sets and manual for the trainer kit (Excluding sample program) can be allowed for their board exam.
- 2. Definition for built in function for the board can be given to students for their board exam.
- 3. Manual containing procedure for program down loading through boot loader or JTAG can be given to students for their board exam

DIPLOMA IN ELECTRONICS AND COMMUNICAITON ENGINEERING

III YEAR

M - SCHEME

VI SEMESTER

2015-2016 onwards

COMPUTER HARDWARE SERVICING AND NETWORKING PRACTICAL

CURRICULAM DEVELOPMENT CENTRE

M - SCHEME

(Implemented from the academic year 2015 - 2016 onwards)

Course Name : Electronics and Communication Engineering

Subject Code : 34065

Semester : VI Semester

COMPUTER HARDWARE SERVICING AND

Subject Title : NETWORKING PRACTICAL

SCHEME OF INSTRUCTION AND EXAMINATION

No. of weeks per semester: 15 weeks

Subject	Instruction		Examination			
COMPUTER HARDWARE	Hrs/	Hrs/	Marks		Demotion	
SERVICING AND NETWORKING	week	semester	INTERNAL ASSESMENT	BOARD EXAM	TOTA L	Duration
PRACTICAL	4	60	25	75	100	3Hrs

RATIONALE

The course aims at making the students familiar with various parts of computers and laptops and how to assemble them and the different types of peripherals desired. In addition, the course will provide the students with necessary knowledge and skills in computer and laptop software installation and maintenance and to make him diagnose the software faults. This subject also gives the knowledge and competency to diagnose the problems in computer hardware and peripherals and also gives the knowledge for trouble shooting for systematic repair and maintenance of computers and laptops

OBJECTIVES

On completion of the following exercises, the students must be able to

- Know the various indicators, switches, SMPS, motherboard ,connectors and various disk drives used in Computers. .
- Install various secondary storage devices with memory partition and formatting.
- Acquire the practical knowledge about the installation of various devices like printer, scanner, web camera and bio-metric devices.
- Assemble PC system and laptop and checking the working condition.
- Install Dual OS in a system.
- Enable to perform different cabling in a network.
- Configure Internet connection and able to debug network issues.

ALLOCATION OF MARKS

	Max. Marks		
CONTENT	Part A	Part B	
Procedure	15	15	
Execution	15	15	
Result with printout	5	5	
viva	5		
Total	75		

LIST OF EXPERIMENTS

Part A - Computer Hardware servicing

1.IDENTIFICATION OF SYSTEM LAYOUT

- i) Identify front panel indicators & switches and Front side & rear side connectors
- ii) Familiarize the computer system layout by marking positions of SMPS, Motherboard, FDD, HDD, CD, DVD and add on cards.

2. HARD DISK

- i) Configure bios setup program and troubleshoot the typical problems using BIOS utility.
- ii) Install, Configure, Partition and Format Hard disk.

3. DVD/BLU-RAY WRITER

- i) Install and Configure a DVD Writer and record a blank DVD.
- ii) Install and Configure a Blu-ray Writer and record a blank Blu-ray Disc.

4. Printer Installation

- i) Install and configure Dot matrix printer
- ii) Install and configure Laser printer
- **5.** i) Install and configure Scanner
 - ii) Install and configure Web cam and bio-metric device

- **6.** i) Assemble a system with add on cards and check the working condition of the system
 - ii) Install OS in the assembled system.
- **7.** Install Dual OS in a system
- **8.** i) Assemble and Disassemble a Laptop to identify the parts.
 - ii) Install OS in the laptop.

Part B - Computer networking

- **9.** Do the following Cabling works for establishing a network
 - i) Crimp the network cable with RJ 45 connector in Standard cabling
- **10.** mode and cross cabling mode.
 - ii) Test the crimped cable using a cable tester.
- **10.** Use IPCONFIG, PING, TRACERT and NETSTAT utilities to debug the network issues.
- **11.** Interface two PCs to form Peer To Peer network using the connectivity devices Switch or Router in a LAN .
- 12. Share the files and folders in a LAN.
- **13.** Share a printer in a LAN.
- **14.**Configure DNS to establish interconnection between systems and describe how a name is mapped to IP Address
- **15.**i) Install and configure Network Devices: HUB, Switch or Routers Install and Configure NIC.

COMPUTER HARDWARE SERVICING AND NETWORKING PRACTICAL - REQUIREMENTS

Hardware Requirements:

Computer with Pentium / Core	processors with inbuilt NIC -30 Nos
Hard disk drive	-02 Nos
CDD/ DVD Writer	-02 Nos
Blank Blu-ray disk	-30 Nos
Web camera	-02 Nos
Laser Printer	-02 Nos
Dot matrix Printer	-02 Nos
Blank DVD	-30 Nos
Scanner	-02 Nos
Laptop	-02 Nos
Bio metric device	-02 Nos
Crimping Tool	-06 Nos
Network Cables	
RJ45 Tester	-06 Nos
Modem with internet connectio	n -02 Nos
Hub	-02 Nos
Switch/ Router	-02 Nos

Software Requirements:

Windows XP operating system/ Windows 7 OS DVD/ CD Burning S/W (Ahead Nero or latest S/W)

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

III YEAR

M SCHEME

VI SEMESTER

2015-2016 onwards

TEST ENGINEERING PRACTICAL

CURRICULAM DEVELOPMENT CENTRE

M-SCHEME

(Implemented from the Academic year 2015-2016 onwards)

Course Name: Electronics and Communication Engineering

Subject code: 34066

Semester : VI Semester

Subject title : TEST ENGINEERING PRACTICAL

TEACHING AND SCHEME OF EXAMINATION:

Number of Weeks/ Semester : 15 weeks

Subject	Instruction		ection Examination			
TEST ENGINEERING	Hrs/	Hrs/	Marks			
PRACTICAL	week	semester	INTERNAL BOARD ASSESMENT EXAM TOTAL		Duration	
	5	75	25	75	100	3Hrs

ALLOCATION OF MARKS

CIRCUIT DIAGRAM :	20
PROCEDURE:	25
EXECUTION & HANDLING OF EQUIPMENT :	: 15
OUTPUT / RESULT :	10
VIVA – VOCE :	05

TOTAL: 75

EQUIPMENTS REQUIRED

SI.No	Name of the Equipments
1	PCB SHORTS LOCATOR TRAINER
2	V-I CHARACTERISTICS TRAINER SYSTEM
3	FUNCTIONAL TESTING TRAINER SYSTEM
4	IN-CIRCUIT MEASUREMENT TRAINER SYSTEM
5	BOUNDARY SCAN TEST TRAINER SYSTEM
6	DIGITAL and ANALOG SIMULATOR

34066 - TEST ENGINEERING PRACTICAL

List of experiments

- 1. Locate a Short in a circuit Board using Short Locator.
- 2.Test and verify the combinational logic circuits NAND, NOR, Half-Adder, Half-Subtractors, Multiplexers, De-multiplexer, Decoder & Encoder using functional test method.
- 3.Test and verify the Sequential Logic Circuits D-FF, RS-FF, Latch, Counter, Shift Register using functional test method.
- 4. Test and verify the Memory Devices SDRAM/DRAM Chip . using functional test method.
- 5. a. Test and verify the digital circuits in a circuit using auto compensation technique.
 - b.Test and verify the open emitter circuit using pull down resistor.
 - c. .Test and verify the open collector circuit using pull up resistor.
- 6. Test the functionality of operational amplifier in Inverting , Non-inverting and voltage follower mode.
- 7. Test the VI characteristics of R,L,C using signature method.
- 8.Test the VI characteristics of electronic components Diode, Zener Diode, NPN/PNP Transistor using signature method .
- 9. Test the VI characteristics of RC Filter, Low Pass Filter, Band Pass Filter using signature method.
- 10.Test the VI characteristics of electronic components MOSFET and Transistor using Trigger pulse and signature method.
- 11.Test the VI characteristics of electronic components SCR and Opto coupler using Trigger pulse and signature method.
- 12. Test RLC circuit using in-circuit measurement method.
- 13..Test the Boundary Scan IC using JTAG port and non boundary scan IC using boundary scan IC.
- 14. Detect and list down the stuck to VCC and stuck to Gnd pins in a boundary scan IC.
- 15.Develop a device model for NAND and NOR using device library and create a test pattern for testing.

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

II YEAR

M SCHEME

VI SEMESTER

2015-2016 onwards

PROJECT WORK

CURRICULAM DEVELOPMENT CENTRE

M-SCHEME

(Implemented from the Academic year 2015-2016 onwards)

Course Name: Electronics and Communication Engineering

Subjectcode: 34067

Semester : VI

Subject title : PROJECT WORK

TEACHING AND SCHEME OF EXAMINATION:

Number of Weeks/ Semester : 15 weeks

Subject	Instruction			Exam	ination	
	Hrs/	Hrs/	Marks			.
PROJECT WORK	week	semester	INTERNAL ASSESMENT	BOARD EXAM	TOTAL	Duration
	4	60	25	75	100	3 Hrs

OBJECTIVES:

- The project is aimed to assemble test a photo type model of any one item/gadget
- Real time application problems if any may be identified from any industry and maybe chosen
- The knowledge and the skill sofar acquired may be made use of.
- The team spirit may be motivated
- The entrepreneurship ideas may be motivated by conducting a career guidance programme
- Learn and understand the gap between the technological knowledge acquired through curriculam and the actual industrial need and to compense it by acquiring additional knowledge as required.

Detail OF ASSESSMENT	Period of assessment	Max. Marks
First Review	6 th week	10
Second Review	15 th week	10
Attendance	Entire semester	5
Total	25	

EVALUATION FOR BOARD EXAMINATION:

Details of Mark allocation	Max Marks
Marks for Report Preparation, Demo, Viva-voce	65
Marks for answers of 4 questions which is to be set by the external examiner from the given question bank consisting of questions in the following two topics Disaster Management and Environmental Management. Out of four questions two questions to appear from each of the above topics i.e. 2 questions x 2 topics = 4 questions 4 questions x 2 ½ marks = 10 Marks	10
Total	75

DETAILED SYLLABUS

ENVIRONMENTAL & DISASTER MANAGEMENT

1. ENVIRONMENTAL MANAGEMENT

Introduction – Environmental Ethics – Assessment of Socio Economic Impact – Environmental Audit – Mitigation of adverse impact on Environment – Importance of Pollution Control – Types of Industries and Industrial Pollution.

Solid waste management – Characteristics of Industrial wastes – Methods of Collection, transfer and disposal of solid wastes – Converting waste to energy – Hazardous waste management Treatment technologies.

Waste water management – Characteristics of Industrial effluents – Treatment and disposal methods – Pollution of water sources and effects on human health.

Air pollution management – Sources and effects – Dispersion of air pollutants – Air pollution control methods – Air quality management.

Noise pollution management – Effects of noise on people – Noise control methods.

2. DISASTER MANAGEMENT

Introduction – Disasters due to natural calamities such as Earthquake, Rain, Flood, Hurricane, Cyclones etc – Man made Disasters – Crisis due to fires, accidents, strikes etc – Loss of property and life..

Disaster Mitigation measures – Causes for major disasters – Risk Identification – Hazard Zones – Selection of sites for Industries and residential buildings – Minimum distances from Sea – Orientation of Buildings – Stability of Structures – Fire escapes in buildings -

Cyclone shelters – Warning systems.

Disaster Management – Preparedness, Response, Recovery – Arrangements to be made in the industries / factories and buildings – Mobilization of Emergency Services - Search and Rescue operations – First Aids – Transportation of affected people – Hospital facilities – Fire fighting arrangements – Communication systems – Restoration of Power supply – Getting assistance of neighbors / Other organizations in Recovery and Rebuilding works – Financial commitments – Compensations to be paid – Insurances – Rehabilitation.

LIST OF QUESTIONS

1. ENVIRONMENTRAL MANAGEMENT

- 1. What is the responsibility of an Engineer-in-charge of an Industry with respect to Public Health?
- 2. Define Environmental Ethic.
- 3. How Industries play their role in polluting the environment?
- 4. What is the necessity of pollution control? What are all the different organizations you know, which deal with pollution control?
- 5. List out the different types of pollutions caused by a Chemical / Textile / Leather / Automobile / Cement factory.
- 6. What is meant by Hazardous waste?
- 7. Define Industrial waste management.
- 8. Differentiate between garbage, rubbish, refuse and trash based on their composition and source.
- 9. Explain briefly how the quantity of solid waste generated in an industry could be reduced.
- 10. What are the objectives of treatments of solid wastes before disposal?
- 11. What are the different methods of disposal of solid wastes?
- 12. Explain how the principle of recycling could be applied in the process of waste minimization.
- 13. Define the term 'Environmental Waste Audit'.
- 14. List and discuss the factors pertinent to the selection of landfill site.
- 15. Explain the purpose of daily cover in a sanitary landfill and state the minimum desirable depth of daily cover.
- 16. Describe any two methods of converting waste into energy.
- 17. What actions, a local body such as a municipality could take when the agency appointed for collecting and disposing the solid wastes fails to do the work continuously for number of days?
- 18. Write a note on Characteristics of hazardous waste.
- 19. What is the difference between municipal and industrial effluent?
- 20. List few of the undesirable parameters / pollutants anticipated in the effluents from oil refinery industry / thermal power plants / textile industries / woolen mills / dye industries / electroplating industries / cement plants / leather industries (any two may be asked)

- 21. Explain briefly the process of Equalization and Neutralization of waste water of varying characteristics discharged from an Industry.
- 22. Explain briefly the Physical treatments "Sedimentation" and "Floatation" processes in the waste water treatment.
- 23. Explain briefly when and how chemical / biological treatments are given to the waste water.
- 24. List the four common advanced waste water treatment processes and the pollutants they remove.
- 25. Describe refractory organics and the method used to remove them from the effluent.
- 26. Explain biological nitrification and de-nitrification.
- 27. Describe the basic approaches to land treatment of Industrial Effluent.
- 28. Describe the locations for the ultimate disposal of sludge and the treatment steps needed prior to ultimate disposal.
- 29. List any five Industries, which act as the major sources for Hazardous Air Pollutants.
- 30. List out the names of any three hazardous air pollutants and their effects on human health.
- 31. Explain the influence of moisture, temperature and sunlight on the severity of air pollution effects on materials.
- 32. Differentiate between acute and chronic health effects from Air pollution.
- 33. Define the term Acid rain and explain how it occurs.
- 34. Discuss briefly the causes for global warming and its consequences
- 35. Suggest suitable Air pollution control devices for a few pollutants and sources.
- 36. Explain how evaporative emissions and exhaust emissions are commonly controlled.
- 37. What are the harmful elements present in the automobile smokes? How their presence could be controlled?
- 38. What is the Advantage of Ozone layer in the atmosphere? State few reasons for its destruction.
- 39. Explain the mechanism by which hearing damage occurs.
- 40. List any five effects of noise other than hearing damage.
- 41. Explain why impulsive noise is more dangerous than steady state noise.
- 42. Explain briefly the Source Path Receiver concept of Noise control.
- 43. Where silencers or mufflers are used? Explain how they reduce the noise.
- 44. Describe two techniques to protect the receiver from hearing loss when design / redress for noise control fail.
- 45. What are the problems faced by the people residing along the side of a railway track and near to an Airport? What provisions could be made in their houses to reduce the problem?

2. DISASTER MANAGEMENT

- 1. What is meant by Disaster Management? What are the different stages of Disaster management?
- 2. Differentiate Natural Disasters and Man made Disasters with examples.

- 3. Describe the necessity of Risk identification and Assessment Surveys while planning a project.
- 4. What is Disasters recovery and what does it mean to an Industry?
- 5. What are the factors to be considered while planning the rebuilding works after a major disaster due to flood / cyclone / earthquake? (Any one may be asked)
- 6. List out the public emergency services available in the state, which could be approached for help during a natural disaster.
- 7. Specify the role played by an Engineer in the process of Disaster management.
- 8. What is the cause for Earthquakes? How they are measured? Which parts of India are more vulnerable for frequent earthquakes?
- 9. What was the cause for the Tsunami 2004 which inflicted heavy loss to life and property along the coast of Tamilnadu? Specify its epicenter and magnitude.
- 10. Specify the Earthquake Hazard Zones in which the following towns of Tamilnadu lie: (a) Chennai (b) Nagapattinam (c) Coimbatore (d) Madurai (e) Salem.
- 11. Which parts of India are experiencing frequent natural calamities such as (a) heavy rain fall (b) huge losses due to floods (c) severe cyclones
- 12. Define basic wind speed. What will be the peak wind speed in (a) Very high damage risk zone A, (b) High damage risk zone, (c) Low damage risk zone.
- 13. Specify the minimum distance from the Sea shore and minimum height above the mean sea level, desirable for the location of buildings.
- 14. Explain how the topography of the site plays a role in the disasters caused by floods and cyclones.
- 15. Explain how the shape and orientation of buildings could reduce the damages due to cyclones.
- 16. What is a cyclone shelter? When and where it is provided? What are its requirements?
- 17. What Precautionary measures have to be taken by the authorities before opening a dam for discharging the excess water into a canal/river?
- 18. What are the causes for fire accidents? Specify the remedial measures to be taken in buildings to avoid fire accidents.
- 19. What is a fire escape in multistoried buildings? What are its requirements?
- 20. How the imamates of a multistory building are to be evacuted in the event of a fire/Chemical spill/Toxic Air Situation/ Terrorist attack, (any one may be asked).
- 21. Describe different fire fighting arrangements to be provided in an Industry.
- 22. Explain the necessity of disaster warning systems in Industries.
- 23. Explain how rescue operations have to be carried out in the case of collapse of buildings due to earthquake / blast / Cyclone / flood.
- 24. What are the necessary steps to be taken to avoid dangerous epidemics after a flood disaster?
- 25. What relief works that have to be carried out to save the lives of workers when the factory area is suddenly affected by a dangerous gas leak / sudden flooding?
- 26. What are the difficulties faced by an Industry when there is a sudden power failure? How such a situation could be managed?

- 27. What are the difficulties faced by the Management when there is a group clash between the workers? How such a situation could be managed?
- 28. What will be the problems faced by the management of an Industry when a worker dies because of the failure of a mechanical device due to poor maintenance? How to manage such a situation?
- 29. What precautionary measures have to be taken to avoid accidents to labourers in the Industry in a workshop / during handling of dangerous Chemicals / during construction of buildings / during the building maintenance works.
- 30. Explain the necessity of medical care facilities in an Industry / Project site.
- 31. Explain the necessity of proper training to the employees of Industries dealing with hazardous products, to act during disasters.
- 32. What type of disaster is expected in coal mines, cotton mills, Oil refineries, ship yards and gas plants?
- 33. What is meant by Emergency Plan Rehearsal? What are the advantages of such Rehearsals?
- 34. What action you will take when your employees could not reach the factory site because of continuous strike by Public Transport workers?
- 35. What immediate actions you will initiate when the quarters of your factory workers are suddenly flooded due to the breach in a nearly lake / dam, during heavy rain?
- 36. What steps you will take to avoid a break down when the workers union of your Industry have given a strike notice?
- 37. List out few possible crisis in an organization caused by its workers? What could be the part of the middle level officials in managing such crisis?
- 38. What types of warning systems are available to alert the people in the case of predicted disasters, such as floods, cyclone etc.
- 39. Explain the necessity of Team work in the crisis management in an Industry / Local body.
- 40. What factors are to be considered while fixing compensation to the workers in the case of severe accidents causing disability / death to them?
- 41. Explain the legal / financial problems the management has to face if safely measures taken by them are found to be in adequate.
- 42. Describe the importance of insurance to men and machinery of an Industry dealing with dangerous jobs.
- 43. What precautions have to be taken while storing explosives in a match/ fire crackers factory?
- 44. What are the arrangements required for emergency rescue works in the case of Atomic Power Plants?
- 45. Why residential quarters are not constructed nearer to Atomic Power Plants?

<u>Electronics and Communication Engineering</u> <u>Alternative Subjects for L Scheme with that of M Scheme</u>

Subjects in L Scheme		Subjects in M Scheme			
Semester	Subject	Name of the	Semester	Subject code	Name of the
	code	Subjects			Subjects
III	24031	Electronic Devices	III	34031	Electronic Devices
W.E.F		and Circuits			and Circuits
'OCT '16	24032	Electrical Circuits	III	34032	Electrical Circuits
		and Instrumentation			and Instrumentation
	25233	" C " Programming	III	34033	Programming in " C
	24034	Electronic Devices and Circuits Practical	III	34034	Electronic Devices and Circuits Practical
	24035	Electrical Circuits & Instrumentation Practical	III	34035	Electrical Circuits and Instrumentation Practical
	24036	Programming in "C" Practical	III	-	No Equivalent paper
	30001	Computer Application Practical	III	-	No Equivalent paper
IV W.E.F.	24041	Industrial Electronics	IV	34041	Industrial Electronics
APR '17	24042	Communication Engineering	IV	34042	Communication Engineering
	24043	Digital Electronics	IV	34043	Digital Electronics
	24044	Linear Integrated Circuits	IV	34044	Linear Integrated Circuits
	24045	Industrial Electronics and Communication Engineering Practical	IV	34045	Industrial Electronics and Communication Engineering Practical
	24046	Integrated Circuits Practical	IV	34046	Integrated Circuits Practical
	20002	Communication and Life Skill Practical	IV	30002	Life and Employability Skill Practical
V W.E.F. OCT '17	24051	Advanced Communication Systems	V	34051	Advanced Communication Systems
	24052	Microcontroller	V	34052	Microcontroller
	24053	Very Large Scale	V	34053	Very Large Scale
		Integration			Integration
	24071	Digital	V	34071	Digital
	222=5	Communication			Communication
	23072	Programmable Logic Controller	V	34272	Programmable Logic Controller
	24055	Advanced Communication Systems_Practical	V	34055	Advanced Communication Systems_Practical
	24056	Microcontroller Practical	V	34056	Microcontroller Practical

	24057	Very Large Scale Integration_Practical	V	34057	Very Large Scale Integration_Practical
VI	24061	Embedded Systems	VI	-	No equivalent paper
W.E.F. APR '18	24682	Computer Hardware & Network		34061	Computer Hardware Servicing & Networking
	24081	Television Engineering	VI	34081	Television Engineering
	24082	Biomedical & Telemedicine	VI	34082	Biomedical Instrumentation
	24083	Electronic System Design	V	34073	Electronic System Design
	24064	Embedded Systems Practical	VI	34066	Embedded Systems Practical
	24684	Computer Hardware & Network Practical	VI	34064	Computer Hardware Servicing and Networking Practical
	24066	Simulation Practical			No Equivalent Paper
	24067	Project Work	VI	34067	Project Work